首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel(EN24) and nickel-based superalloy(IN718), and the microstructures of three distinct weld zones—the weld interface(WI)/thermo-mechanically affected zone(TMAZ),the heat-affected zone(HAZ), and the base metal—were examined.The joint was observed to be free of defects but featured uneven flash formation.Electron backscatter diffraction(EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ.Moreover, significant refinement in grain size(2 –5 μm) was observed at the WI/TMAZ with reference to the base metal.The possible causes of these are discussed.The microhardness profile across the welded joint shows variation in hardness.The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates.The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

2.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

3.
The main aim of this study was to investigate liquation cracking in the heat-affected zone (HAZ) of the IN939 superalloy upon tungsten inert gas welding. A solid solution and age-hardenable filler metals were further studied. On the pre-weld heat-treated samples, upon solving the secondary γ′ particles in the matrix, primary γ′ particles in the base metal grew to “ogdoadically diced cubes” of about 2 μm in side lengths. The pre-weld heat treatment reduced the hardness of the base metal to about HV 310. Microstructural studies using optical and field-emission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ. The constitutional melting of the secondary, eutectic, and Zr-rich phases promoted the liquation cracking in the HAZ. The microstructure of the weld fusion zones showed the presence of fine spheroidal γ′ particles with sizes of about 0.2 μm after the post-weld heat treatment, which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals, respectively. Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.  相似文献   

4.
The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ) of the IN939 superalloy upon tungsten inert gas welding. A solid solution and age-hardenable filler metals were further studied. On the pre-weld heat-treated samples, upon solving the secondary γ′ particles in the matrix, primary γ′ particles in the base metal grew to "ogdoadically diced cubes" of about 2 μm in side lengths. The pre-weld heat treatment reduced the hardness of the base metal to about HV 310. Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ. The constitutional melting of the secondary, eutectic, and Zr-rich phases promoted the liquation cracking in the HAZ. The microstructure of the weld fusion zones showed the presence of fine spheroidal γ′ particles with sizes of about 0.2 μm after the post-weld heat treatment, which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals, respectively. Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.  相似文献   

5.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316 L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas(TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

6.
Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller's reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing; therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification; therefore, hot cracks were larger than predicted by the hot crack prediction models.  相似文献   

7.
Revealing grains and very fine dendrites in a solidified weld metal of aluminum–magnesium–silicon alloys is difficult and thus,there is no evidence to validate the micro-and meso-scale physical models for hot cracks. In this research, the effect of preheating on the microstructure and hot crack creation in the pulsed laser welding of AA 6061 was investigated by an optical microscope and field emission electron microscopy. Etching was carried out in the gas phase using fresh Keller’s reagent for 600 s. The results showed that the grain size of the weld metal was proportional to the grain size of the base metal and was independent of the preheating temperature. Hot cracks passed the grain boundaries of the weld and the base metal. Lower solidification rates in the preheated samples led to coarser arm spacing;therefore, a lower cooling rate. Despite the results predicted by the micro and meso-scale models, lower cooling rates resulted in increased hot cracks. The cracks could grow in the weld metal after solidification;therefore, hot cracks were larger than predicted by the hot crack prediction models.  相似文献   

8.
Micro-plasma are surface melting of 0Crl9Ni9 shielded metal are welding joint with a micro-plasma are welder produced a thin surface melted layer with a refined microtructure. The surface treatment changed the anodie polarization behavior in 0.5 mol/L H2SO4 solution. The polarization tests showed that for the as-welded joint both the heat-affected zone and the weld metal decreased in resis-tance to corrosion compared with the as-received parent material while for the micro-plasma are surface melted joint the corrosion resistance increased significantly. This increase in corrosion resistance is attributed to the rapid solidification of the melted layer. Rapid solidification of the melted layer refines its mierostrueture, decreases its mierosegregation, and inhibits the precipitation of chromium carbides at the grain boundaries.  相似文献   

9.
The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.  相似文献   

10.
Dissimilar joints comprised of copper-nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper-nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper-nickel base metal, respectively.  相似文献   

11.
研究了多道次搅拌摩擦加工 (FSP) 和镁粉添加对 Al 1050 合金不同微观结构部分的影响,包括搅拌区 (SZ)、热影响区 (HAZ) 和热机械影响区 (TMAZ)等。对微观结构分析结果表明,随着 FSP 道次的增加,非复合样品和复合样品中 SZ 的晶粒尺寸减小,而非复合样品中 TMAZ 和 HAZ 的晶粒尺寸增加。此外,镁粉的加入导致了大程度的晶粒细化,增加 FSP 道次的数量导致原位复合样品中 Al–Mg 金属间化合物的分布更均匀。拉伸试验结果表明,与母材和复合材料样品相比,经过四道 FSP 的非复合材料样品表现出更高的伸长率和韧性断裂。然而,与母材和非复合样品相比,该样品表现出脆性断裂和更高的拉伸强度。与经过 FSP 的母材和非复合材料样品相比,复合材料样品的制造显着提高了硬度。  相似文献   

12.
采钨极氩弧焊(TIG)焊接方法对低活化马氏体(CLAM)钢进行初步焊接试验,并对焊接试样的宏观形貌和微观结构进行观察分析,同时也对焊接试样的硬度进行了测试。结果显示,CLAM钢的焊接性能不太好,存在明显没有焊好的缝隙;焊缝的硬度大大高于热影响区和母材,热影响区的硬度最低。焊缝的显微组织是尺寸较大的板条马氏体,母材是尺寸较小的马氏体结构,热影响区的显微组织主要为等轴晶。  相似文献   

13.
焊后多次正火对超细晶粒钢热影响区组织与硬度的影响   总被引:1,自引:0,他引:1  
为研究400 MPa级超细晶粒钢焊接接头热影响区粗晶区的晶粒细化行为,对其空冷与水冷接头均进行了3次焊后正火热处理.组织观察表明:第1次正火后粗晶区晶粒明显细化,但细晶区和母材区的晶粒均比正火前的稍微粗大,第2次与第3次正火并不能进一步细化晶粒;冷却条件对热影响区组织的影响并不十分显著.显微硬度测试表明:第1次正火使接头硬度大幅度降低,甚至低于母材的原始硬度,后续正火对硬度的影响较小;在所有试样中,仅水冷接头第1次正火后的热影响区硬度与原始母材及母材区的硬度接近.由于焊后多次正火并不能使热影响区晶粒进一步细化,反而使其有粗化与软化的趋势,故应避免焊后多次正火处理.  相似文献   

14.
用弹塑性有限元(ANSYS软件)计算了低组配焊接接头中不同热影响区屈服强度条件下,接头裂纹尖端塑性区的形状和大小的变化。计算结果表明,热影响区屈服强度的变化对接头裂纹尖端塑性区影响规律为屈服强度的降低,塑性区增大,焊缝和母材的塑性区减少。抗断性能分析表明,热影响区强度变化导致裂纹尖端塑性区变化,从而影响热影响区和焊缝的抗断性能。  相似文献   

15.
国内某厂通过铌微合金化和控冷工艺开发试制HRB500E高强度抗震钢筋,采用金相显微镜、维氏硬度计、闪光焊接、疲劳试验机及力学性能测试,对HRB500E钢筋焊接样力学性能、HV5硬度、金相显微组织、焊接接头强度及疲劳强度进行了试验研究。结果表明:焊接前后焊件和母材强度变化小于5 MPa,强度变化不大,焊件拉伸断口远离焊缝,为延性断口,焊接性能良好;在焊接热循环作用下,焊接接头焊缝、热影响粗晶区、热影响细晶区的表层和芯部经历奥氏体化后再结晶,其组织和硬度变化不大;混晶区至母材表层和芯部则经历不完全奥氏体化后的再结晶,母材芯部组织为F+P+B、表层组织为S,表层硬度HV5高于芯部硬度30 HV5,其组织和硬度变化较大;焊接接头的抗拉断负荷从焊缝到混晶区逐渐减小,焊缝和热影响粗晶区的抗拉断负荷比母材的高;采用国际焊接学会推荐的FAT75疲劳设计曲线对钢筋焊接接头疲劳强度设计是安全的。  相似文献   

16.
高速列车车厢用的铝合金板焊接接头的组织与性能   总被引:3,自引:1,他引:2  
利用光学显微镜和透射电子显微镜研究了国产7020铝合金熔化极惰性气体保护焊(MIG)接头的微观组织结构,并对接头的力学性能进行研究.结果表明,接头的硬度以焊缝中心线为轴呈对称分布,且焊缝中心为接头的最薄弱环节;焊缝区为典型的树枝状晶的铸造组织.在熔合区,焊缝一侧为沿散热方向排列的柱状晶,另一侧为细小的等轴晶组织.热影响区内,仍可见纤维状加工痕迹,部分析出相固溶到基体中;强化相的粗化,是热影响区内出现软化区的主要原因.国产7020铝合金焊接接头强度达到欧洲标准.  相似文献   

17.
本文研究了钛合金Ti-6Al-4V真空电子束焊接接头的机械性能和金相组织结构。发现接头的冲击韧性不亚于母材,甚至高于母材。焊缝区和热影响区的硬度均高于母材,组织分别为100%马氏体和部分马氏体,晶粒粗化现象与其它熔化焊方法相比轻微得多。  相似文献   

18.
非等强焊接接头屈服行为及屈服强度预测   总被引:2,自引:1,他引:2  
细晶粒钢焊接接头热影响区晶粒粗化引起的屈服应力的局部下降,对接头安全性的影响需要做出定量评价.有限元分析发现,热影响区软化的对接接头的平板拉伸试样,在热影响区相邻的焊缝区和母材区,Mises等效应力升高,分布规律符合指数函数规律,而在热影响区相应减小,这种变化满足力的平衡条件.在此基础上提出了预测接头屈服强度的方法,其预测结果与有限元分析有很好的一致性.这种方法可用于热影响区软化焊接接头屈服强度的预测和高匹配接头的强度设计.  相似文献   

19.
为提高镁合金焊接接头的耐蚀性,对6mm厚的AZ31B板材搅拌摩擦焊焊缝进行微弧氧化处理,并研究焊缝的微观组织、截面显微硬度及其微弧氧化前后的耐蚀性.结果表明:接头的微观组织明显分为3个区域:焊核区、热机械影响区及热影响区,并且接头整体硬度低于母材,焊接时焊核部位出现软化现象,导致其硬度最低.盐水浸泡实验和电化学测试表明,微弧氧化前焊缝的耐蚀性低于母材,经过微弧氧化处理后,焊缝表面形成一层致密光滑的陶瓷膜,极大提高其耐蚀性.并且,经同工艺微弧氧化处理后,焊缝表面微弧氧化膜要比母材的微弧氧化膜厚.  相似文献   

20.
采用光学显微镜、透射电子显微镜、维氏硬度计和拉伸试验机,研究了Al-6.6Zn-1.7Mg-0.26Cu合金挤压材熔化极惰性气体保护焊接接头的显微组织和力学性能。结果表明:焊缝中心区为枝晶,靠近母材侧的焊缝熔合区为柱状晶,母材为等轴晶,但靠近焊缝熔合区的母材晶粒发生了长大。焊接接头的硬度以焊缝为中心呈对称分布,从母材到焊缝中心,硬度先下降后上升再下降。焊缝中心区的硬度最低,为86~105(HV)。焊接接头的抗拉强度为309 MPa,屈服强度为237 MPa,伸长率为4.75%,挤压材的焊接强度系数为0.76。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号