首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The method of producing ferronickel at low temperature(1250–1400℃) has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works, Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation, a large particle size of ferronickel is desired.Therefore, in this study, the influences of CaO, CaF_2, and H_3BO_3 additives on the evolution of ferronickel particle at ≤1250℃ were investigated.The experiments were conducted at 900–1250℃ with the addition of CaO,CaF_2, and H_3BO_3.The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃, with the CaO addition of 10 wt% of the ore weight, ferronickel particles with size of 20 μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt% CaO and 10 wt% CaF_2.The addition of boric acid further increased the ferronickel particle size to 376 μm, as shown by the experiments with the addition of 10 wt% CaO, 10 wt% CaF_2, and 10 wt% H_3BO_3.  相似文献   

2.
In this work, the effects of HNO3 concentration on the pit morphologies of high-cubic-texture aluminum foil etched in HNO3–HCl and HNO3–H2SO4–HCl solutions were investigated. When the aluminum foil was etched in HNO3–HCl solutions, the morphologies of pits transformed from irregular tunnels to typical tunnels (as inverted pyramids) and shallow cuboids as the HNO3 concentration in the etchant solution was increased. However, as the HCl concentration in the etchant solution was increased, the morphologies of pits transformed from shallow cuboids to typical tunnels (as inverted pyramids) and irregular tunnels. When the aluminum foil was etched in n N HNO3–(7.2?n) N H2SO4–0.8 N HCl solutions, the morphologies of the pits transformed from typical tunnels (i.e., the number of sub-tunnels formed on the main tunnels increased) to irregular tunnels (corrugated tunnels and polyline tunnels) as the HNO3 concentration in the etchant solution was increased. These effects are attributed primarily to corrosion on the (100) and (010) faces of pits being accelerated and to the (001) faces being prone to passivation to different degrees when various concentrations of HNO3 are added to the etchant solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号