首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

2.
設f(t)是以2π为週期的,依Lebesgue的意義是可積的週期函數,其富理埃級數的共軛級數为 sum from n=1 to ∞(b_n cos nt-a_n sin nt)。(1) 記φ(t)=f(x+t)-f(x-t),設積分 g(x)=1/2πintegral from n=0 to π(φ(t)cot(t/2)dt) 依Canchy的意義存在,陳建功教授證明:假使  相似文献   

3.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

4.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

5.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

6.
设三角级数α_0/2+sum from n=1 to ∞(a_ncos nx+b_nsin nx)的余弦系数a_n有相同符号,(全部a_n≥0,或全部a_n≤0)正弦系数b_n亦有相同符号,简称这种级数为同号系数级数。在[1]中我们证明了:设f~((k))(x)存在而且是连续的。当f(x)的富里埃级数是同号级数时,  相似文献   

7.
本文通过对级数sum from n=1[1/(n+1)]=1无穷乘积multiqly from n=2 to ∞(1-1/n~2)=1/2和几何级数sum from n=0 to ∞q~n=1/1-q(|q|<1)的探讨,得到了七个定理和两个推论。  相似文献   

8.
研究了由幂级数所表示的整函数f(z)=sum from n=0 to ∞(a_nz~(n))的系数重排问题,得到了如下结果:任意整函数f(z)=sum from n=0 to ∞(a_nz~n)的系数经重排P(n′→n)后仍为整函数且其级不变的充要条件是n′=n+0(n)。  相似文献   

9.
1、引言 Riemann ζ—函数ζ(2n)=sum from k=1 to ∞(1/k~(2n))的值,有古典的公式可以计算,但比较复杂。在学习文[1]中建立了sum from k=1 to ∞(1/k~2)=π~2/6的一个简单证明之后,使我联想得能否也建立sum from k=1 to ∞(1/k~4)=π~4/90,sum from k=1 to ∞(1/k~6)=π~6/945,sum from k=1 to ∞(1/k~8)=π~8/9450等的简单证明,并使[1]的方法更进一步推广,形成某种规律,较一般地解决这些问题,这就是此文的目的。  相似文献   

10.
本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K~m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K~m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));  相似文献   

11.
文章利用循环矩阵的性质,获得循环图G(n;±S)=(V,E)的特征值λr=sum from j=1 to n ajω(j-1)r,r=0,1,…,n-1。其中ω=cos2π/n+isin2π/n。并且循环图及其补图的拉普拉斯矩阵的谱sum from j=1 to n aj-sum from j=1 to n ajω(j-1)r,n-sum from j=1 to n ajω(j-1)r。  相似文献   

12.
I.總说 1.设:f(x)是以2π為周期的連续函数。记这种函数的全体为C_(2π)。下面所考慮的函数都屬於C_(2π)。將函数f(x)的Fejer積分和de la Vallee-Poussin積分以及Jackson积分分别记做 a_n(f,x)=1/nπ integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~2 dt, V_n(f,x)=1/2π(2n)!!/(2n-1)!! integral from n=-π to π f(t)cos~(2n) t-x/2 dt, J_n(f,x)=3/nπ(2n~2+1) integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~4 dt.  相似文献   

13.
设U_n(x)=(sin(n 1)θ)/(sinθ)(x=cosθ)是第二类Chebyshev多项式,b_k=b_k~(n)=cos((kπ)/(n 1))(k=1,2,……n)是U_n(x)的零点,以{-1,b_1……,b_n,1}为基点的2n 1次拟Hermite-Fejer插值多项式是  相似文献   

14.
由函数①C(x)=1+sum from n=1 to ∞(-1)~n(x~(2n))/((2n)!)(n∈N,x∈R), ②S(x)=sum from n=1 to ∞(-1)~(n-1)(x~(2n-1)/((2n-1)!)(n∈N,x∈R),的奇偶性,C(0)=1,S(O)=0,C~2(x)+S~2(x)=1,周期性,点[C(x),S(x)]与单位圆上点一一对应推出C(x)=cosx,S(x)=sinx,即  相似文献   

15.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

16.
关于自然数组成的级数sum from k=1 to ∞ (k)和自然数平方组成的级数sum from k=1 to ∞ (k~2)的前n项求和公式: S_1(n)=sum from k=1 to n (k)=n(n+1)/2 S_2(n)=sum from k=1 to n (k~2)=1/6n(n+1)(2n+1) (2)我们大家非常熟悉,并且在一些文献中分别给出不同的证明。本文利用公式(1),(2)介绍几种自然数立方组成的级数sum from k=1 to ∞ (k~3)的前n项和公式:  相似文献   

17.
设Q(q)=multiply from n=1 to ∞((1-q~n)(|q|<1))欧拉的五边形数定理为 Q(q)=sum from n=0 to ∞((-1)~nq~(n(3n+1))/2)(1-q~(2n+1))雅可比得到Q(q)~3=sum from n=0 to ∞((-1)~n(2n+1)q~(n+1)/2)本文得到Q(q)~2=sum from n=0 to ∞((-1)~nq~(n(n+1)/2)(1-q~(2n+2))p_n(q))其中p_n~h(q)=sum from r=0 to n(q~r(n-r)) 证明:由[1;p.36,eq.(3.3.6)] sum from j=0 to N((Q)_v/(q)_1(q)_(n-j)(-1)~iZ~iq~(j(j-1)/2))=(z)_N. (1)及[1;p.19,Cor.2.3.α=b=0,i=q,c=q~(2r+1)]  相似文献   

18.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

19.
判断一个级数收敛与发散的方法较多,但在知道一个级数收敛后,欲求其和,一般情况是比较困难的,而且通用的方法甚少。贝努里兄弟曾尽全力求级数sum from n=1 to ∞(1/n~2)之和,而未得结果。1736年,欧拉(Kuler)首先求得级数sum from n=1 to ∞(1/n~2)之和为π~2/6。以后又有了:  相似文献   

20.
证明在高温时,氢分子的 z_(仲)=z_(正)氢气中包含仲氢和正氢,它们的配分函数Z_(仲)和Z_(正)分别为 z_(仲)=sum from J=0.2.4…to∞(2J+1)e~(-J(J+1)θ_r/T) ……(1) z_(正)=sum from J=1.3.5…to∞(2J+1)e~(-J(J+1)θ_r/T) ……(2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号