首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
这里x=col.(x_1,x_2,…,x_n),A(t)是t的一致概周期(一致Π.Π.)n阶方阵,f(t)是t的一致Π.Π.n维列向量函数,‖x‖=sum from i=1 to n |x_i|,A(t)=(α_(ij)(t)),‖A(t)‖=sum from i+j=1 to n|α(ij)(t)|或欧氏模。 从文[1]知,对于周期线性系统情形:A(t+T)=A(t),f(t+T)=f(t),T>0,系统(1)有T-周  相似文献   

2.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

3.
本文讨论耗散方程的混合问题{u-(tt)-△u-μ△u_t=H(▽u,D▽u) (t,x)∈(0,T)×Ωu(0,x)=f(x),u_t(0,x)=g(x) ■通过适当的函数变换,运用凸性方法证明了当H(▽u,D▽u)≥ρu_t~2+q sum from i=1 to n u_(x_1)~2++μ(?)u_t sum from i=1 to n u_(x_i)~2+u(q-2)sum from i=1 to m u_(x_1)u_(tx_1)(这里ρ>0,q>0)及integral from Ωe~(qf(x))g(x)dx>0时,所考虑混合问题的光滑解在有限时间内爆破.  相似文献   

4.
本文讨论半线性双曲方程u_(tt)-sum from n=(i,j=1) to n(a_(ij)(x,t)u_(x_i))_(x_j)=f(x,u)的爆破问题,并给出其初边值问题的解在有限时间内爆破的充分条件,这个结果不同于文献[1]、[2]的结果.  相似文献   

5.
在亚贝尔群上得到函数方程f_3(x_1+x_2+x_3)-[f_(21)(x_1+x_2)+f_(22)(x_1+x_2)+f_(23)(x_2+x_3)]+f_(11)(x_1)+f_(12)(x_2)_f_(13)(x_3)=0和f(x_1+x_2+…+x_n)-sum from i=1 to (n-1)sum from j=2 to n f_(ij)(x_i+x_j)+sum from i=1 to n f_i(x_i)=0的一般解。  相似文献   

6.
用变分方法研究高阶边值问题(-1)n+1u(2n+2)+∑n/k=1 (-1)kcku(2k)-a(x)u +f(x,u)=0,0相似文献   

7.
设p为任一素数,L,s,t为任意自然数,a_(ij)(1≤t,1≤j≤s)为st个整数,对于每个i(1≤i≤t),a_(ij),…,a_(is)不全为P~L的倍数。又记X=max(1,1×1)。考察一次同余方程组a_(il)x_1… a_(is)x_x x_(s i)≡0(modp~L)(1) (1≤i≤St)适合条件-p~L/2相似文献   

8.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

9.
在求常系数非齐次线性微分方程组特解时,目前书中采用的方法有常数变量法,算子消去法、待定系数法和拉氏变换法,这些方法的计算是复杂的,本文提出算子公式法,计算较简单。 设常系数非齐次线性微分方程组为 dX/dt=AX+f(t) (1) 其中 A=(a_(ij)),a_(ij)(i,j=1,2…,n)均为常数,X与f(t)是n维列向量:X(t)=(x_1(t),x_2(t),…,x_n(t))~T,f(t)=(f_1(t),f_2(t),…,f_n(t))~T。  相似文献   

10.
命a_(ij)(1≤i≤t,1≤j≤s)为ts个整数,p为素数,且对于每个i(1≤i≤t),a_(il),…,a_(is)不全为p的倍数,及对于每个j(1≤i≤s),a_(ij),…,a_(tj)不全为p的倍数。又记x=max(1|x|),p_1=[(p-1)/2],p_2=[p/2],这里[u]表示u的整数部分。考察两组对偶的一次同余方程组  相似文献   

11.
设y=f(u),u=φ(x),u在x_0可微分;u_0=φ(x_0),y在u_0可微分,则复合函数y=f(φ(x))在x_0可微分,而且(1) dy/dx|_(x=x_0)=f′(u_0)·φ′(x_0)。这个复合函数求导数法则的证明,在通常的数学分析教科书上,有如下两种: 〔证法一〕给x从x_0起取增量△x(≠0),则相应地函数u从u_0起得增量△u,y从f(φ(x_0))起得增量△y。因为f′(u_0)存在,所以当△u≠0时,令α=△y/△u-f′(u_0),就有limα=0,而且 △u→0  相似文献   

12.
设 k 为某一自然数,数列{x}、{y}当n>k 时满足y_n=C_0x_n+C_1x_(n-1)+…+C(?),则称{y_n}为{x_n}的相关数列.设 g_1(t),g_2(t),…,g(t)在 u(t_0)内严格单调且连续,g(t_0)=x_0,i=1,2,…,k.g_i(t)的反函数为 g~(-1)(x),它在 u(x_0)内严格单调且连续,g~(-1)(x_0)=t_0,i=1,2,…,k设F(t)=C_1f〔g_1(t)〕+C_2f〔g_2(t)〕+…+Cf〔g(t)〕,且存在 l,1≤l≤k,使|C_1|>(?)|C_i|.  相似文献   

13.
给出R~N中有界域Ω上拟线性椭圆型方程-sum from t=1 to N(( / x_1)(|▽u|~(p-2)( u/ x_1)))=λ|u|~((p~*-2))u+f(x,u)(p~*=Np/(N-p),N>p>1)的Dirchlet问题的多解性结果。  相似文献   

14.
对于显函数y=f(x),若y的导数存在,则y的各阶导数:y'、y″、……y~(n),与原求导函数y一样,都各是关于同一变量x的函数:y′=f′(x)=f_1(x)、y″=f″(x)=f_2(x)、……y~(n)=f~(n)(x)=f_(n)(x)。相应地,若y通过中间变量u=(?)(x)是x  相似文献   

15.
本文研究带多点边条件的广义Sturm-Liouvil1e问题: (E_0) -d/dx(p(x)du/dx) q(x)u=λr(x)u, u(a)cosa-p(a)u'(a)sinα=o, u(b)cosβ-p(b)u'(b)sinβ=o, u(a_i~-)=h_(iu)(a_i~ ),u'(a_i~-)=k_(iu')(a_i~ ), 其中j=1,…,σ-1;a=a_0相似文献   

16.
§1 引言和预备引理 考虑如下的具有初值的一维非线性抛物型方程组的空间周期解问题。(?)/((?)t)u_j(t,x)=a_i(t) e~2/((?)x~2u)(t,x) f_j(1,x,u_j(1,x))……,u_R(1,x),(?)/((?)x)u_j(t,x),……,(?)/((?)x)u_n(t,x))(1)(t,x)(?)〕0,T〔×R_s R=〕-∞,∞〔,j=f,……,n,u_j(0,x)=(?)_1(x),x(?)R,(2)u_j(t,x 2A)=u_j(t,x),对一切(t,x(?)0,T〔×R,j=1,……n (3)其中a_(?)(t)是已知的正值连续函数,T 是给定的正数,曲(?)(t,x,u,u~*)作为x 的函数(t,u,u~*)  相似文献   

17.
本文用解析方法得到了均值估计sum from n≥3 to n≤x 1/logφ(n)=x sum from j=1 to a-a_j/log~jx O(x/log~(a 1)x)其中φ(n)是Euler函数,a为任意自然数,a_1=1,a_2=1-sum from p 1/plog(1-1/p),一般地 a_j=(-1)~(j-1)E~(j-1)(t)|t=0这里 E(t)=1/(t 1) multiply from p(1-1/p)(1 1/p(1-1/p)~(t-1))  相似文献   

18.
设非线性函数,f(x)∈C[-1,1]是非负的,f′(x)∈C[-1,1],f■(x)=f(x) ε,其中ε<0,C■是与ε无关的常数,当,f(x)满足[f'(x)]~2/f_■(x)≤C■时,存在次数不超过n的代数多项式P_n(x),使得f(x)-1/P_n(x)1≤C_f~″·1/nω(f′,1/n)(C_f~■仅与C■有关)。根据这个定理,得到多项式f(x)=x~2或x_ ~2的倒数的逼近阶是0(2/n~2)。  相似文献   

19.
考虑二阶线性常微分方程的两点边值问题: Lu=f(x),a≤x≤b (1) (I){ a_1u′(a)+a_2u(a)=α,b_1u′(b)+b_2u(b)=β (2) (a_1~2+a_2~2≠0,b_1~2+b_2~2≠0)不失一般性,算子L可看作 Lu=u″(x)-q(x)u(x) (3) 众所周知,方程(1)的通解具有如下迭加结构: u(x)=c_1u_1(x)+c_2u_2(x)+u_f(x) (4)其中u_1,u_2为对应(1)的齐次方程  相似文献   

20.
在平面上,任给二次曲线Γ:F(x,y)≡a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(12)x+2a_(23)y+a_(33)=0 (1)和一点 M_0(x_0,y_0),则过 M_0的直线 l 的方程可写为x=x_0+Xt,y=y_0+Yt.X:Y 是 l 的方向,-∞相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号