首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
文章针对过盈配合的叶轮-主轴模型,通过对比不同的加热方式,选择出一种最优的加热方式;在该加热方式下,通过有限元计算的方法,得到拆解力与相关因素随时间变化的关系,并绘制曲线图,找到影响拆解力的最大因素;采用正交试验方法安排相关参数,通过回归分析对数据进行处理,建立拆解力与过盈量、摩擦系数、热膨胀系数和温度之间的回归方程。  相似文献   

2.
6.3米推焦车已经成为我公司的主打产品之一,其走行机构的轮、轴属大过盈配合,无需加键即可传递较大转矩。本篇首先分析其过盈量,然后计算出热装的加热温度,最后选择合适的加热工具对车轮进行加热,配合适当的工装进行装配。  相似文献   

3.
采用内置远红外线电加热管烘干机加热小麦 ,对物料层升温速度和温度分布均匀性与穿透风速的关系进行了单因素试验和四因素二水平的正交试验研究 ,结果表明 ,物料内层的升温速度及内外层温差均随穿透风速的增加而降低 ,内外层温差随加热时间先增大后减小 ;并给出四因素之间的较优参数组合  相似文献   

4.
借助CFD仿真手段,模拟蓄热式加热炉内钢坯加热的实际状况,研究了钢坯长度、宽度方向上下表面和中心温度的温度分布,提出钢坯存在上下温差、四角边缘温度高和靠近出钢口钢坯温度低等问题。同时,研究了炉内不同厚度钢坯与加热时间的基本关系,比较了仿真计算结果与实际炉内加热时间,通过数值拟合,得出钢坯厚度与加热时间的拟合公式,可在生产实际中使用。上述研究结果可为加热炉钢坯加热制度的制定和优化提供依据。  相似文献   

5.
链轮复杂的结构增加了感应加热时控制磁感应强度分布的难度,严重影响着轮齿加热层温度的均匀性,制约淬火效果的提升。导磁体作为调控磁场分布的重要手段,可显著提高链轮感应加热的质量。但是,目前导磁体对链轮感应加热过程的影响未进行系统的研究。本文采用导磁体配合V形线圈对链轮进行感应加热,并通过有限元模拟系统地分析了导磁体结构参数对链轮感应加热过程的影响规律。研究发现:不同导磁体结构参数对温度均匀性的影响规律不同,并且导磁体侧板圆半径的改变对链轮感应加热温度均匀性的影响最大,导磁体侧板夹角的改变对链轮感应加热温度均匀性的影响最小。  相似文献   

6.
在构建阳极挥发分逸出模型基础上,以Fluent 15.0为计算平台,采用数值模拟方法研究阳极在整个焙烧过程中的温度分布和挥发分的逸出行为。研究结果表明:料箱内的温差难以彻底消除,处于不同位置的阳极的温度分布存在显著差异,上层温度高于下层温度,右侧温度高于左侧温度;但对于单块阳极,其上下温差或水平温差都不大;随着焙烧进行,低温区向火焰流动方向移动;随着加热过程的进行,阳极内的挥发分残余量逐渐减少,但处于料箱内不同位置的阳极即使是在同一时刻,其残余量也各不相同,当加热完成时,残余量差异会变得很小。  相似文献   

7.
首先,通过对电热水器加热过程热平衡方程的解析,导出壳体内水温在加热过程中的理论计算公式.在此基础上,提出电热水器水温加热到设定温度所需加热时间与加热能耗的理论预测模型,并通过计算值与实测值对比,验证预测模型的有效性.最后,通过对不同工况的计算,考察不同因素对加热时间和加热能耗的影响.研究结果表明:随着水容量和设定温度的提高,加热时间和加热能耗显著增加;初始水温提高,加热时间和加热能耗明显减少;加热功率增加,加热时间呈指数减少,加热能耗减少不明显;保温性能和环境气温的提高有助于减少加热时间和加热能耗.  相似文献   

8.
研究静止式钢板感应加热,基于COMSOL Multi-Physics软件开发了二维电磁热耦合数值模型,温度计算结果与实验结果吻合;并分析了感应加热过程中钢板的电磁场分布规律和温度场分布规律.感应器加装导磁体后使涡流产生的焦耳热集中分布于感应器正下方,提高了加热效率.最后,研究了感应加热工艺参数对温度的影响,即在其他加热参数相同的情况下,感应器加载电流、电流频率越高,钢板加热速度越快;感应器与钢板间距越大,钢板加热速度越慢.  相似文献   

9.
为解决现有直压硫化技术中电磁感应加热不能完全满足轮胎硫化过程的需求,使用COMSOL软件分析鼓瓦内部的磁通密度及温度分布,并设计了电磁感应线圈的新型排布方式。通过仿真分析对比发现,将单根电磁感应线圈分成多段小型线圈置于鼓瓦中,有利于提高轮胎的升温速率和整体温度的均匀性。在鼓瓦中部添加电磁感应线圈可为轮胎胎冠处硫化提供有效热源,更能满足实际硫化需求。根据新型排布方式下在停止加热后轮胎各面的温度趋势特点,提出采取间歇式加热的工艺,并根据温差调整电磁感应线圈的频率,最终达到温度的动态平衡。  相似文献   

10.
柴油机排气微粒过滤体微波加热再生过程的优化   总被引:3,自引:0,他引:3  
利用微波加热柴油机排气微粒过滤体是一种有望解决过滤体热再生易损坏难题的新颖方法。本文针对自行设计的过滤体微波加热再生系统建立了一个 2维非稳态传热传质模型。模型考虑了再生过程中微波空间加热、二次空气、微粒燃烧等众多因素 ,并得到了实验验证。利用该模型研究了空气保温层、二次空气流速及含氧量、过滤体中微粒沉积量、微波功率及微波加热时间等因素对再生效率、再生速率、再生温度及再生时间等参数的影响。所获得的优化参数被用于实用装置的控制 ,使再生过程缩短到 5~ 7min,而再生温度被控制在可接受范围内  相似文献   

11.
废弃电路板THD元器件拆除工艺的试验研究   总被引:1,自引:1,他引:0  
电子元器件的拆除对于废弃电路板的回收处理具有重要意义,文章针对利用液体加热介质拆除通孔插装元器件的过程,通过均匀设计方法安排试验,利用逐步非线性回归、通径分析和等值线图,研究了拆除过程中加热温度和时间2个最重要的因素,建立拆除工艺模型,分析最优工艺参数。结果表明,在220~260℃温度范围内,拆除THD元器件的最优工艺参数为250℃和48 s。  相似文献   

12.
路面加热机是整个就地热再生机组的基础,加热机加热路面后的效果对路面再生质量有直接的影响。以热风循环式加热机工作装置为研究对象,运用多圆形喷嘴射流冲击模型对其作业过程进行分析。通过相关理论计算得出了喷嘴的排列方式、喷嘴孔直径、加热板离地高度、射流速度、热风温度等参数与沥青路面表面换热系数的关系。计算表明:三角形交错排列和矩形排列对路面换热系数的数值影响基本一致;再生作业中,当热风的冲击速度较大时,随着加热板离地高度的增加表面换热系数降低;当热风的冲击速度较小时,加热板离地高度对表面换热系数影响较小。  相似文献   

13.
针对既有散热器采暖用户又有低温地板辐射采暖用户的双供热参数的供暖系统,提出了一种节能供暖系统分布式回水加压系统。通过理论和工程实例对比分析,得出分布式回水加压系统中循环泵和管网初投资小,循环泵耗电量少;在既有的散热器供暖小区扩建地暖用户,水力工况明显优于混水系统;当地暖用户和回水管连接点位置处在过冷和过热用户之间时,能减少近端用户入口调节阀的节流功耗,增大地暖用户下游散热器用户的作用压差,改善原系统的水力工况。  相似文献   

14.
根据煤氧复合理论,煤自燃是由于煤和氧接触发生氧化反应放出热量引起煤温度升高达到煤的自燃点而发生的。故煤的氧化放热特性反应了煤自燃能力的强弱。为测定煤的放热能力大小本文设计了煤的氧化升温实验,并采集薛村煤矿2#煤层、4#煤层、6#煤层三组煤样进行了实验研究。实验中对低温条件下不同温度时煤样对氧气的消耗速率、CO的生成速率及CO2的生成速率进行了测定,并根据其测量值对煤样的放热强度进行了计算,绘制放热强度与温度关系的散点图。然后运用回归分析方法,分析了煤氧化升温过程中放热强度与温度的关系。在低温阶段临界温度前后煤的放热强度与温度都呈线性关系。在临界温度之前煤的放热强度较低,而达到临界温度后煤的放热强度会急剧增加。研究结果对煤自然发火的防治具有重要意义。  相似文献   

15.
激光加热时的温度场与相变过程研究   总被引:4,自引:0,他引:4  
本文对低温回火态GCr15轴承钢的激光束加热奥氏体化过程进行了研究.根据传热学原理,建立了激光束加热时的温度场和相变过程计算的数学模型,采用有限差分法进行计算,借助于Gauss-Seidle迭代法,在CDC计算机上进行运算、求解,得出了平板试样硬化层中的温度分布、奥氏体体积率、马氏体体积率与激光加热的工艺参量——激光束尺寸、功率密度与扫描速度间的关系曲线,为优选激光相变硬化工艺提供了初步理论依据.  相似文献   

16.
目的研究加热温度及保温时间对钢内部裂纹愈合的影响,为钢内部裂纹愈合处理提供理论依据,以促进钢材的智能化、提高其使用寿命。方法用钻孔压缩法在试样内部引入裂纹,然后对含内部裂纹的试样进行不同加热温度和不同保温时间的空冷处理,采用金相显微镜及扫描电镜观察分析裂纹愈合程度。结果裂纹愈合区是由铁素体构成的细晶愈合带,随加热温度升高及保温时间延长愈合带变窄。结论随加热温度升高及保温时间延长裂纹愈合程度增加;温度是影响裂纹愈合的主要因素,而加热时间的影响次之;裂纹愈合存在临界温度,此临界温度应大于该材料的最低再结晶温度。  相似文献   

17.
针对供暖工程中并联环路阻力损失计算与流体力学中的并联环路计算的不同,指出流体力学中的并联环路不存在自然作用压力差,而供暖系统中的并联环路有自然作用压力差的作用,并导出了供暖工程中并联环路的阻力损失计算式,从而解释了当供暖系统中的并联环路阻力损失的差值与自然作用压力的差值不同时出现垂直失调、导致室温的波动,并通过实例进行了分析计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号