首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S G Cull-Candy  M M Usowicz 《Nature》1987,325(6104):525-528
In the mammalian central nervous system amino acids such as L-glutamate and L-aspartate are thought to act as fast synaptic transmitters. It has been suggested that at least three pharmacologically-distinguishable types of glutamate receptor occur in central neurons and that these are selectively activated by the glutamate analogues N-methyl-D-aspartate (NMDA), quisqualate and kainate. These three receptor types would be expected to open ion channels with different conductances. Hence if agonists produce similar channel conductances this would suggest they are acting on the same receptor. Another possibility is suggested by experiments on spinal neurons, where GABA (gamma-amino butyric acid) and glycine appear to open different sub-conductance levels of one class of channel while acting on different receptors. By analogy, several types of glutamate receptor could also be linked to a single type of channel with several sub-conductance states. We have examined these possibilities in cerebellar neurons by analysing the single-channel currents activated by L-glutamate, L-aspartate, NMDA, quisqualate and kainate in excised membrane patches. All of these agonists are capable of opening channels with at least five different conductance levels, the largest being about 45-50 pS. NMDA predominantly activated conductance levels above 30 pS while quisqualate and kainate mainly activated ones below 20 pS. The presence of clear transitions between levels favours the idea that the five main levels are all sub-states of the same type of channel.  相似文献   

2.
A Stelzer  R K Wong 《Nature》1989,337(6203):170-173
In the mammalian cortex, glutamate and gamma-aminobutyric acid (GABA) are the principal transmitters mediating excitatory and inhibitory synaptic events. Glutamate activates cation conductances that lead to membrane depolarization whereas GABA controls chloride conductances that produce hyperpolarization. Here we report that the GABAA-activated conductance in hippocampal pyramidal cells is enhanced by glutamate at concentrations below that required for its excitatory action. The GABA-potentiating effect can be induced, with comparable potency, by several glutamate analogues such as quisqualate, N-methyl-D-aspartate (NMDA), kainate and, surprisingly, by D-2-amino-5-phosphonovalerate (APV), an antagonist for NMDA receptors. Data from dose-response curves show that glutamate enhances the GABAA conductance without significantly changing GABA binding affinity. The low concentration of glutamate needed to enhance GABAA responses raises the possibility that glutamate modulates the strength of GABA-mediated transmission in the cortex.  相似文献   

3.
M M Usowicz  V Gallo  S G Cull-Candy 《Nature》1989,339(6223):380-383
L-GLUTAMATE and L-aspartate are thought to have a widespread function as synaptic transmitters in the mammalian central nervous system and there are at least three types of neuronal glutamate receptors, which can be activated by the selective agonists N-methyl-D-aspartate (NMDA), quisqualate and kainate. Recent experiments indicate that glutamate receptors also occur in astrocytes. We have used patch-clamp methods to determine whether one type of macroglial cell, the type-2 astrocyte, possesses glutamate receptors, as previously proposed from neurochemical studies. We find that glutamate and related amino acids can evoke whole-cell and single-channel currents in type-2 astrocytes from rat cerebellum. Although these cells are found mainly in white matter, where neurotransmission does not occur, their processes are closely associated with axons at nodes of Ranvier, suggesting that such receptors are involved in neuronal-glial signalling at the node. Our experiments show that glial cells possess quisqualate- and kainate-receptor channels but lack receptors for NMDA. Interestingly, these glutamate channels exhibit multiple conductance levels that are similar in amplitude to the neuronal glutamate channels.  相似文献   

4.
A Dumuis  M Sebben  L Haynes  J P Pin  J Bockaert 《Nature》1988,336(6194):68-70
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as well as to Ca2+ (refs 5, 6), have led to the suggestion that these receptors are important in plasticity during development and learning. They have been implicated in long-term potentiation (LTP), a model for the study of the cellular mechanisms of learning. We report here that glutamate and NMDA, acting at typical NMDA receptors, stimulate the release of arachidonic acid (as well as 11- and 12-hydroxyeicosatetraenoic acids from striatal neurons probably by stimulation of a Ca2+-dependent phospholipase A2. Kainate and quisqualate, as well as K+-induced depolarization were ineffective. Our results provide direct evidence in favour of the hypothesis, that arachidonic acid derivatives, produced by activation of the postsynaptic cell, could be messengers that cross the synaptic cleft to modify the presynaptic functions known to be altered during LTP. In addition, we suggest that NMDA receptors are the postsynaptic receptors which trigger the synthesis of these putative transynaptic messengers.  相似文献   

5.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

6.
Fast excitatory transmission in the vertebrate central nervous system is mediated mainly by L-glutamate. On the basis of pharmacological, physiological and agonist binding properties, the ionotropic glutamate receptors are classified into NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate) and kainate subtypes. Sequence homology between complementary DNA clones encoding non-NMDA glutamate receptor subunits reveals at least two subunit classes: the GluR1 to GluR4 class and the GluR5 class. Here we report the cloning and expression of a functional rat glutamate receptor subunit cDNA, GluR6, which has a very different pharmacology from that of the GluR1-GluR4 class. Receptors generated from the GluR1-GluR4 class have a higher apparent affinity for AMPA than for kainate. When expressed in Xenopus oocytes the homomeric GluR6 receptor is activated by kainate, quisqualate and L-glutamate but not by AMPA, and the apparent affinity for kainate is higher than for receptors from the GluR1-GluR4 class. Desensitization of the receptor was observed with continuous application of agonist. The homomeric GluR6 glutamate receptor exhibits an outwardly rectifying current-voltage relationship. In situ hybridizations reveal a pattern of GluR6 gene expression reminiscent of the binding pattern obtained with [3H]kainate.  相似文献   

7.
I Mody  U Heinemann 《Nature》1987,326(6114):701-704
In the mammalian central nervous system, receptors for the excitatory amino-acid neurotransmitters are divided into three subtypes depending on their sensitivity to three specific agonists: kainate, quisqualate and N-methyl-D-aspartate (NMDA). The ionophores operated by NMDA are gated by Mg2+ in a voltage-dependent manner and allow passage of several cations, including Ca2+ which may be important in plastic alterations of neuronal excitability. Indeed, specific antagonists of NMDA receptors effectively block spatial learning, long-term potentiation and some animal models of chronic epilepsy. Despite their abundance on central neurons, NMDA receptors, with a few noteworthy exceptions, do not generally seem to be involved in low-frequency synaptic transmission. Here we report for the first time that NMDA receptors of the dentate gyrus, where they do not normally contribute to the generation of synaptic potentials, become actively involved in synaptic transmission following long-lasting neuronal changes induced by daily electrical stimulation (kindling) of the amygdala or hippocampal commissures. In contrast to controls, the excitatory postsynaptic potentials (e.p.s.ps) of granule cells in hippocampal slices obtained from kindled animals displayed characteristics typical of an NMDA-receptor-mediated component. The involvement of NMDA receptors in synaptic transmission may underlie the long-lasting changes in neuronal function induced by kindling.  相似文献   

8.
F L Kidd  J T Isaac 《Nature》1999,400(6744):569-573
Most of the fast excitatory synaptic transmission in the mammalian brain is mediated by ionotrophic glutamate receptors, of which there are three subtypes: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate), NMDA (N-methyl-D-aspartate) and kainate. Although kainate-receptor subunits (GluR5-7, KA1 and 2) are widely expressed in the mammalian central nervous system, little is known about their function. The development of pharmacological agents that distinguish between AMPA and kainate receptors has now allowed the functions of kainate receptors to be investigated. The modulation of synaptic transmission by kainate receptors and their synaptic activation in a variety of brain regions have been reported. The expression of kainate receptor subunits is developmentally regulated but their role in plasticity and development is unknown. Here we show that developing thalamocortical synapses express postsynaptic kainate receptors as well as AMPA receptors; however, the two receptor subtypes do not colocalize. During the critical period for experience-dependent plasticity, the kainate-receptor contribution to transmission decreases; a similar decrease occurs when long-term potentiation is induced in vitro. This indicates that during development there is activity-dependent regulation of the expression of kainate receptors at thalamocortical synapses.  相似文献   

9.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

10.
Acidic amino acids, such as l-glutamate, are believed to be excitatory neurotransmitters in the mammalian brain and exert effects on several different receptors named after the selective agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA). The first two receptors collectively termed non-NMDA receptors, have been implicated in the mediation of synaptic transmission in many excitatory pathways in the central nervous system (CNS), whereas NMDA receptors, with few exceptions do not appear to be involved; this is typified in the hippocampus where there is a high density of NMDA receptors yet selective NMDA receptor antagonists, such as D-2-amino-5-phosphonovalerate (APV), do not affect synaptic potentials. NMDA receptors have, however, been shown to be involved in long-term potentiation (LTP) in the hippocampus, a form of synaptic plasticity which may be involved in learning and memory. NMDA receptors have also been found to contribute to epileptiform activity in this region. We now describe how NMDA receptors can participate during high-frequency synaptic transmission in the hippocampus, their involvement during low-frequency transmission being greatly suppressed by Mg2+. A frequency dependent alleviation of this blockade provides a novel synaptic mechanism whereby a single neurotransmitter can transmit very different information depending on the temporal nature of the input. This mechanism could account for the involvement of NMDA receptors in the initiation of LPT and their contribution, in part, to epileptic activity.  相似文献   

11.
Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons.   总被引:20,自引:0,他引:20  
S F Traynelis  S G Cull-Candy 《Nature》1990,345(6273):347-350
Mammalian neurons contain at least three types of excitatory amino-acid receptors, selectively activated by N-methyl-D-aspartate (NMDA) or aspartate, (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate ((S)-AMPA) and kainate. An important aspect of NMDA receptors is their regulation by a variety of factors such as glycine, Mg2+ and Zn2+ that are present in vivo. We show here that NMDA receptor responses are selectively inhibited by protons, with a 50% inhibitory concentration (IC50) that is close to physiological pH, implying that NMDA receptors are not fully active under normal conditions. (S)-AMPA and kainate responses remain unchanged at similar pH levels. Proton inhibition is voltage-insensitive and does not result either from fast channel block, a change in channel conductance, or an increase in the 50% excitatory concentration (EC50) of aspartate/NMDA or glycine. Instead, protons seem to decrease markedly the opening frequency of 30-50 pS NMDA channels, and reduce the relative proportion of longer bursts. This feature of NMDA receptors could be relevant to neurotoxic activation of NMDA receptors during ischaemia, as well as to seizure generation, as extracellular proton changes occur during both of these pathological situations. Furthermore, these results may have implications for normal NMDA receptor function as transient changes in extracellular protons occur during synaptic transmission.  相似文献   

12.
T E Salt 《Nature》1986,322(6076):263-265
Excitatory amino acids such as L-glutamate and L-aspartate are well established as neurotransmitter candidates in the mammalian central nervous system, and three types of receptor for these substances have been proposed, characterized by the agonists N-methyl-D-aspartate (NMDA), kainate and quisqualate. All these receptors have been suggested to have synaptic roles in excitatory transmission in the brain. Here I demonstrate that NMDA receptors play a crucial role in the observed response of ventrobasal thalamus (VB) neurones to natural stimulation of somatosensory afferents, but do not appear to be responsible for the short-latency excitation seen on electrical stimulation of the afferents which is apparently mediated by excitatory amino-acid receptors of the non-NMDA type. This result indicates an involvement of NMDA and non-NMDA receptors in the responses of VB neurones to stimulation of somatosensory somatosensory afferents, depending on the mode of stimulation of the pathway.  相似文献   

13.
Long-term potentiation (LTP) in the hippocampus is widely studied as the mechanisms involved in its induction and maintenance are believed to underlie fundamental properties of learning and memory in vertebrates. Most synapses that exhibit LTP use an excitatory amino-acid neurotransmitter that acts on two types of receptor, the N-methyl-D-aspartate (NMDA) and quisqualate receptors. The quisqualate receptor mediates the fast synaptic response evoked by low-frequency stimulation, whereas the NMDA receptor system is activated transiently by tetanic stimulation, leading to the induction of LTP. The events responsible for maintaining LTP once it is established are not known. We now demonstrate that the sensitivity of CA1 neurons in hippocampal slices to ionophoretically-applied quisqualate receptor ligands slowly increases following the induction of LTP. This provides direct evidence for a functional post-synaptic change and suggests that pre-synaptic mechanisms also contribute, but in a temporally distinct manner, to the maintenance of LTP.  相似文献   

14.
Kim SJ  Kim YS  Yuan JP  Petralia RS  Worley PF  Linden DJ 《Nature》2003,426(6964):285-291
Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre-Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.  相似文献   

15.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

16.
S Hestrin 《Nature》1992,357(6380):686-689
The central nervous system has extraordinary plasticity in early life. This is thought to involve N-methyl-D-aspartate (NMDA) receptors which, along with the non-NMDA receptors, mediate fast excitatory synaptic transmission. Although NMDA receptors may be transiently enhanced early in life, it has not been possible to demonstrate directly a functional change in the NMDA receptor-mediated synaptic response because of the voltage-dependence of the NMDA conductance and the overlapping inhibitory synaptic conductances. Here I report that the duration of evoked NMDA-receptor-mediated excitatory postsynaptic currents (e.p.s.cs) in the superior colliculus is several times longer at early developmental stages compared to that measured in older animals. In contrast, the amplitude of NMDA-receptor-mediated miniature e.p.s.cs does not change during development. The kinetic response of excised membrane patches to a brief activation of NMDA receptors is similar to that of the NMDA e.p.s.c, which suggests that the time course of the NMDA e.p.s.c. in the superior colliculus reflects slow NMDA channel properties as in the hippocampus. Therefore, these data indicate that the molecular properties of NMDA receptors are developmentally regulated and thus may be controlling the ability of synapses to change in early life.  相似文献   

17.
S Charpak  B H G?hwiler  K Q Do  T Kn?pfel 《Nature》1990,347(6295):765-767
Excitatory amino acids mediate fast synaptic transmission in the central nervous system through the activation of at least three distinct ionotropic receptors: N-methyl-D-aspartate (NMDA), the alpha-amino-3-hydroxy-5-methyl-isoxasole-4-propionate (AMPA)/quisqualate (QUIS) and the kainate subtypes (for reviews, see refs 1, 2). They also activate the additional QUIS 'metabotropic' receptor (sensitive to trans-1-amino-cyclopentyl-1,3-dicarboxylate, ACPD) linked to inositol phospholipid metabolism. We have used hippocampal slice cultures to study the electrophysiological consequences of the metabotropic response. We find that activation of an ACPD-sensitive QUIS receptor produces a 'slow' excitation of CA3 pyramidal cells, resulting from depression of a Ca2(+)-dependent K+ current and a voltage-gated K+ current. Combined voltage-clamp and microfluorometric recordings show that, although these receptors can trigger an increase in intracellular Ca2+ concentration, suppression of K+ currents is independent of changes in intracellular Ca2+. These effects closely resemble those induced by activating muscarinic acetylcholine receptors in the same neurons and suggest that excitatory amino acids not only act as fast ionotropic transmitters but also as slow neuromodulatory transmitters.  相似文献   

18.
R G Morris  E Anderson  G S Lynch  M Baudry 《Nature》1986,319(6056):774-776
Recent work has shown that the hippocampus contains a class of receptors for the excitatory amino acid glutamate that are activated by N-methyl-D-aspartate (NMDA) and that exhibit a peculiar dependency on membrane voltage in becoming active only on depolarization. Blockade of these sites with the drug aminophosphonovaleric acid (AP5) does not detectably affect synaptic transmission in the hippocampus, but prevents the induction of hippocampal long-term potentiation (LTP) following brief high-frequency stimulation. We now report that chronic intraventricular infusion of D,L-AP5 causes a selective impairment of place learning, which is highly sensitive to hippocampal damage, without affecting visual discrimination learning, which is not. The L-isomer of AP5 did not produce behavioural effects. AP5 treatment also suppressed LTP in vivo. These results suggest that NMDA receptors are involved in spatial learning, and add support to the hypothesis that LTP is involved in some, but not all, forms of learning.  相似文献   

19.
Dual-component NMDA receptor currents at a single central synapse   总被引:2,自引:0,他引:2  
E D'Angelo  P Rossi  J Garthwaite 《Nature》1990,346(6283):467-470
Present thinking about the way that the NMDA (N-methyl-D-aspartate) class of glutamate receptor operates at central synapses relies mainly on information obtained from single-channel and whole-cell recordings from cultured neurons stimulated by exogenous NMDA receptor agonists. The mechanisms that operate in the postsynaptic membrane of a normal neuron following release of the natural transmitter are far less clear. An important problem is that most normal neurons receive many excitatory synapses (10(3)-10(5) per cell) and these synapses are located on slender dendritic elements far away from the somatic recording site, making the study of discrete synaptic events difficult. Typically, when populations of synapses are activated, NMDA receptor-mediated synaptic potentials appear as slowly rising, long-lasting waves superimposed on faster, non-NMDA-receptor potentials. Although believed to be critical for NMDA receptor function, this slow time-course would not be predicted from single-channel kinetics and its origin remains puzzling. We have now analysed the events occurring at the level of a single excitatory synapse using a simple, small, neuron--the cerebellar granule cell--which has an unusually simple glutamatergic input. By applying high-resolution whole-cell recording techniques to these cells in situ, we were able to study the nature of elementary NMDA receptor-mediated synaptic currents. Contrary to expectations, the prominent currents are fast but are followed by slow ones. Both types of current are strongly voltage-dependent but differ subtly in this respect. Furthermore, the currents are absent unless glycine is provided.  相似文献   

20.
Glycine potentiates the NMDA response in cultured mouse brain neurons   总被引:46,自引:0,他引:46  
J W Johnson  P Ascher 《Nature》1987,325(6104):529-531
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号