首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
环R中的元素a称为quasipolar的,如果存在p∈R使得p~2=p∈comm~2(a),a+p∈U(R)并且有ap∈R~(qnil).环R是quasipolr的若环中每一个元素都是quasipolar的.文章证明了带有自同态σ的局部环R上的一类相对于σ的3×3阶矩阵环是quasipolar的.对于一个带有自同态σ的局部环R,若σ(J(R))?J(R),则T_3(R,σ)是quasipolar的当且仅当R是唯一bleached的.  相似文献   

2.
2012年,崔建和陈建龙提出了J-quasipolar元的概念.对于环R中的一个元素a,如果存在p~2=p∈comm~2(a)使得a+p∈J(R),则称a为J-quasipolar的.一个环称为J-quasipolar的,如果环中每一个元素都是J-quasipolar的.文章证明了一个环R是J-quasipolar环的充分必要条件是环R是quasipolar环并且环R是强J~#-clean环.同时也证明了一个环R是nil-quasipolar环当且仅当环R是J-quasipolar环并且J(R)是幂零的.  相似文献   

3.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

4.
环R中的元素a称为J-polar的,如果存在p∈R使得p2=p∈comm2(a),a+p∈U(R)并且有ap∈J(R).文章证明了一个环R是J-polar的当且仅当它既是quasipolar的又是强rad-clean的,进而研究了理想扩张和平凡扩张的J-polar性.  相似文献   

5.
对于环R中的一个元素a,如果存在p~2=p∈comm~2(a)使得a+p∈J(R),则称a为J-quasipolar的,一个环称为J-quasipolar的如果环中每一个元素都是J-quasipolar的.本文中我们研究了带有自同态的3×3阶矩阵环T_3(R;σ)的J-quasipolar性质.设R是一个局部环,σ:R→R是环R的自同态,如果σ(J(R))?J(R),我们证明了T_3(R;σ)是J-quasipolar的当且仅当R是唯一bleached环的并且R/J(R)??2.  相似文献   

6.
称环R中的元素a是primely polar的,如果存在p~2=p∈comm~2(a)使得a+p∈U(R)且ap∈P(R).称环R是primely polar的,如果环R中每个元素都是primely polar的.文章将primely polar环与其他熟悉的环理论建立起联系,证明了交换的强π正则环是primely polar的,以及primely polar环是强π正则环.此外,还研究了primely polar环在Drazin逆中的特性.结论表明,一个环R是primely polar的,当且仅当对任意的a∈R,存在e~2=e∈comm(a)使得a-e∈U(R),ae∈P(R),当且仅当对任意的a∈R,存在b∈comm(a)使得b=b~2a,a-a~2b∈P(R).  相似文献   

7.
强自反环     
设R为一个环,如果对任意a,b,c∈R,aRbRc=0蕴涵aRcRb=0,则称R为强自反环.给出强自反环的一些性质,利用强自反环给出对称环的一个刻画.证明了如下结果:①R是symmetric环当且仅当R是强自反环和IFP环;②半素环是强自反环,但反之不成立;③R是强自反环当且仅当对任意a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0蕴涵ai1Rai2Rai3…Rain=0,其中i1i2i3…in是1,2,3,…,n的任意一种排列;④设R为quasi-Abel环,x∈R为exchange元,则x为clean元.  相似文献   

8.
若环R的每一非零子环都含有R的一非零左理想,则称R为广义左Hamilton环,简记为GLH-环.本文给出了诣零广义左Hamilton环的元刻划,证明了定理1 诣零环R为GLH-环的充要条件是,(?)a∈R, a≠0,有n∈Z~+使na或na~2为R的非零绝对右零因子.同时给出了诣零GLH-环幂零的一条件,证明了定理2 R为2-扭自由的诣零GLH-环,令R_D={x∈R|P~(n(x))x=0}.若有正整数N,使对任何素数p及(?)~x∈R_p,有o(x)相似文献   

9.
设a∈R,如果对环R元素b,满足aR+bR=R,则存在幂等元e∈R,使得a+be有左逆,那么称元素a有幂等稳定度1(记为isr(a)=1).如果对于R中的所有元素a,都有isr(a)=1,那么称环R有幂等稳定度1(记为isr(R)=1).证明了若R是半完全环,G是初等阿贝尔p-群,则isr(RG)=1.另外,若isr(R)=1,G是局部有限p-群,且p∈J(G),则isr(RG)=1.  相似文献   

10.
元素a称为power-nilpotent的,如果对于所有的x∈comm(a),满足1+(ax)~n∈U(R)对于某个正整数n.环R中的元素a称为power-polar的,如果存在p∈R使得p~2=p∈comm~2(a),a+p∈U(R)并且有ap∈R~(pnil).文章研究了power-polar的相关性质,得到了局部环R上的n×n上三角矩阵是power-polar的条件,进而研究了理想扩张的power-polar性.  相似文献   

11.
右弱C2环   总被引:2,自引:2,他引:0  
给出右弱C2环的定义,证明了:1)环R是右弱C2环当且仅当对每个0≠a∈R,存在正整数n使得a^n≠0,且若r(a^n)=r(e),其中e^2=e∈R,则e∈Ra^n;2)R是右弱C2环,则Zr(R)包含于J(R);3)给出右弱C2环上Dedekind有限环的等价刻画;4)R是强正则环当且仅当R是右pp环,右弱C2环,Abel环和右零因子幂环。  相似文献   

12.
广义可逆环   总被引:1,自引:0,他引:1  
设R是环,环R的自同态α称为可逆的,如果对任意a,b∈R,若ab=0,则α(b)a=0.环R称为α-可逆环,如果R存在可逆的自同态α.本文将可逆环的结论推广到α-可逆环上,另外证明了斜幂级数环(简单地记为sps环)和Armendariz环的推广α-sps Armendariz环R[[x;α]]的Baer性和右p.p.性.  相似文献   

13.
研究了small-内射模和small-内射环的性质,证明了若R是约化的左small-内射环,记S=eRe,e~2=e∈R,则S是约化的左JP-内射环.用单奇异左(右)R-模的small-内射性刻画了半本原环,证明了R是半本原环当且仅当任意单奇异左(右)R-模是small-内射的.得到了在R是半局部环的条件下,以下叙述等价:(1)R是半单环;(2)R是正则环;(3)任意单奇异左(右)R-模是small-内射的;(4)R是半本原环.通过对环的极大左(右)零化子的研究,分别得出了若0≠a∈R,l(a)是R的极大左零化子,则l(a)=l(a~2);若0≠a∈R,r(a)是极大右零化子,则对任意0≠at∈R,有l(a)=l(at),并证得了若R是左small-内射环,且对0≠a∈J,l(a)(r(a))是R的极大左(右)零化子,则a是非零幂零元.  相似文献   

14.
设R为环,证明了如下结论:1)R为Abel环当且仅当对任意x,y∈R,当1-xy∈GPE(R)时必有1-yx∈GPE(R);2)若R为正则环,则PE(R)为正则环;3)R为约化环当且仅当对每个e∈E(R),a∈N(R),存在x∈R,使得ae=eaxae;4)R为强正则环当且仅当对任意a,b∈R,存在x∈R,使得ab=baxab.  相似文献   

15.
设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)\α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-normal环时,首先研究了ξ中元素的性质,并借助这些性质证明了如下主要结论:①若R是一个quasi-normal的clean环,则R是左tb-环;②设R是一个quasi-normal环,如果R是一个左tb-环,则ξ形成了maxl(R)的一组基.特别地,maxl(R)是一个紧致的Hausdorff空间.  相似文献   

16.
设R是一个环,如果U(R)=Uc(R)+J#(R),则称R是GUcJ环;如果对于任意a∈R,都存在g∈Uc(R),p2=p∈R,d∈J#(R)使得ag=p+d(且ap=pa),则称R是(强)J#-Uc-clean环。GUcJ环和J#-Uc-clean环分别是GUJ环和GJ-clean环的真推广。文章研究了GUcJ环的基本性质,证明了R是GUcJ环当且仅当R/J是UcU环且Uc(R/J)=(Uc(R)+J)/J,R是UcJ环当且仅当R是GUcJ环且R/J是reduced的。此外,给出了(强)J#-Uc-clean环的例子,得到了(强)J#  相似文献   

17.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

18.
给出JTT环的定义,研究JTT环的一些性质,主要证明了如下结果:1)R为JTT环当且仅当对任意a∈N(R),x∈R,有a2 x=axa;2)R为交换约化环当且仅当V3(R)是JTT环;3)R为JTT环且a∈aRa,则存在c∈R,使得a=ca2;4)设R为JTT环,则对任意e∈E(R),a∈R,有(1-e)aeR(1-e)ae=0.  相似文献   

19.
给出左极小Abel环的一些刻画,主要证明了如下结果:1)R为左极小Abel环当且仅当2阶上三角矩阵环T_2(R)为左极小Abel环;2)R为强左极小Abel环当且仅当■a∈R,■e∈ME_l(R),|a∨e|≤3;3)设I为R的约化理想,若R/I为左极小Abel环,则R也为左极小Abel环.  相似文献   

20.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(xn)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号