首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
用于流水线ADC的预运放-锁存比较器的分析与设计   总被引:1,自引:0,他引:1  
提出了一种应用于开关电容流水线模数转换器的CMOS预运放-锁存比较器.该比较器采用UMC混合/射频0.18μm 1P6M P衬底双阱CMOS工艺设计,工作电压为1.8 V.该比较器的灵敏度为0.215 mV,最大失调电压为12 mV,差分输入动态范围为1.8V,分辨率为8位,在40 M的工作频率下,功耗仅为24.4 μW.基于0.18μm工艺的仿真结果验证了比较器设计的有效性.  相似文献   

2.
为了降低模数转换器(ADC)复杂度和功耗,基于低复杂度电容阵列数模转换器(DAC)参考电平切换方案,设计了一种低复杂度逐次逼近型模数转换器(SAR ADC).电容阵列DAC中电容采用双参考电平结构,降低电路的复杂度;比较器采用低复杂度两级动态结构,降低功耗;移位寄存器采用低复杂度动态锁存电路结构,降低功耗和减少误码;电容驱动电路采用低复杂度互补金属氧化物半导体(CMOS)反相器结构,减少晶体管数量. SAR ADC电路的仿真结果显示:在电压为1.0 V和采样频率为100 k Hz时,SAR ADC功耗为0.45μW,有效位(ENOB)为9.99 bit,其单步转换功耗为4.4 f J.该SAR ADC指标满足低功耗的要求,适用于便携式、植入式、穿戴式和无线传感器节点等低功耗电子终端.  相似文献   

3.
为了减小踢回噪声引起的比较器参考电压的失调,着重对比较器进了分析和优化,设计了一种低踢回噪声锁存比较器,该比较器包含一级前置放大器和动态锁存比较器.锁存比较器采用两个正反馈锁存器和反馈环提高了锁存速度.采用0.6 μm Bipolar工艺的Hspice对电路进行了模拟.结果表明,在5.5V电源电压下,比较器的最高工作频率为200 MHz,分辨率在8位,功耗为55 μW,可以满足200 MS/s高精度Flash结构模数转换器的需求.  相似文献   

4.
新型高速低功耗CMOS动态比较器的特性分析   总被引:1,自引:0,他引:1  
为了降低sigma-delta模数转换器功耗,针对应用于sigma-delta模数转换器环境的UMC 0.18 μm工艺,提出1种由参考电压产生电路、预放大器、锁存器以及用作输出采样器的动态锁存器组成的新型高速低功耗的CMOS预放大锁存比较器.该比较器中输出采样器由传输门和2个反相器组成,可在较大程度上减少该比较器的功耗.电路采用标准UMC 0.18 μm工艺进行HSPICE模拟.研究结果表明:该比较器在1.8 V电源电压下,分辨率为8位,在40 MHz的工作频率下,功耗仅为24.4 μW,约为同类比较器功耗的1/3.  相似文献   

5.
设计了一种高性能低功耗的10 bit 100 MS/s逐次逼近寄存器(SAR)模数转换器(ADC).基于优值(FOM)设计了一种数模转换器(DAC)单元电容确定法,从而实现了ADC性能和功耗之间的最优折中,得到了最小的后仿真优值为17.92 f J/步,以及与之对应的最优单元电容值1.59 f F.为了减小输入共模电压变化引起的信号敏感性失调,设计了改进的P型输入动态预放大锁存比较器,比较器采用共源共栅结构(cascode)作为P型预放大器的偏置,从而增加了预放大器的共模抑制比(CMRR).模数转换器采用1层多晶硅8层金属(1P8M)55 nm互补型金属氧化物半导体(CMOS)工艺进行了流片验证,在1.3 V电压和100 MS/s采样率的环境下进行测试,信噪失真比(SNDR)的值为59.8 d B,功耗为1.67 mW,有效电路面积仅为0.016 2 mm~2.  相似文献   

6.
介绍了一种适合于高速模数转换器(ADCs)的预放大-锁存(preamplifier-latch)CMOS比较器.此电路结构包括一个预放大器、锁存比较器和输出缓冲器.在预放大器和正反馈锁存比较器之间加入分离电路,以此来减少回扫(kickback)噪声对电路的影响.采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,该比较器在时钟频率为500 MHz,采样频率为40 MHz的时候,可以达到30 μV的精度,功耗大约为0.6 mW.  相似文献   

7.
根据预放大锁存快速比较理论,设计了一种应用于12 bit、1 MS/s逐次转换型模数转换器的比较器。采用上华0.5μm CMOS工艺,基于Hspice仿真工具,提出了测量预放大器和锁存器的失调电压的新方法。对已有失调校准技术进行改进,进一步降低了预放大器和锁存器的失调电压,显著提高了比较器的精度。采用Cadence Spectre进行仿真,结果表明,在5 V单电源电压、20 MHz时钟频率时,分辨率可以达到0.8 mV,满足12 bit SAR ADC的精度要求。  相似文献   

8.
随着半导体工艺尺寸的发展,时钟频率越来越高,临界电荷变得越来越小,电路节点之间的电荷共享效应变得愈加严重,因此导致多节点翻转(multiple node upsets,MNU)的几率变大。为了解决MNU的问题,文章提出了一种高性能低功耗的双节点翻转加固锁存器(HLDRL),当受到单粒子效应影响时,具有单节点翻转(single node upset,SNU)和双节点翻转(double node upsets,DNU)的自恢复能力。该锁存器由18个异构输入反相器组成,仿真实验结果显示该锁存器具有优良的容错性能,可以实现DNU的完全自恢复,而且对高阻态不敏感。与其他容忍DNU的锁存器相比,该锁存器具有较小的开销,延迟和功耗延迟积分别减小了46.83%和45.85%。  相似文献   

9.
为了降低模数转换器复杂度和功耗,基于低复杂度电容阵列DAC设计了一种低功耗逐次逼近型模数转换器(SAR ADC). 该结构中,电容阵列DAC每个电容只有两种参考电平选择,降低逻辑控制电路和电容驱动电路的复杂度,电容阵列DAC最低位电容参与转换,使需要的总单位电容数量相比单调结构减少一半;比较器采用两级动态结构,降低功耗;移位寄存器采用动态锁存电路结构,降低功耗和减少误码;电容驱动电路采用CMOS反相器结构,减少晶体管数量. SAR ADC电路仿真结果显示:在1.0 V电源电压和采样速率为100 kHz 时,SAR ADC功耗为0.45 W ,有效位(ENOB)为9.99 bit ,其单步转换功耗为4.4 fJ.  相似文献   

10.
设计了一种全数字实现的5bit闪烁型模数转换器,该设计的核心思想是通过差分延时链对,将输入的差分模拟信号转换为延时信号,再经过锁存器得到与相应参考电压的比较结果.该数字比较器的参考电压内置于差分延时链对,无需从外部输入.采样保持电路的开关和保持电容也使用数字库中的合适器件代替.该模数转换器完全采用标准数字单元库中的单元搭建而成,与传统实现方法相比,在功耗、面积及设计复杂度上均有了较大程度的改善.电路采用TSMC 65nm工艺设计,核心面积为0.02mm2,在采样频率为100MS/s的情况下,后仿真功耗低达0.6mW,SFDR为37.89dB,ENOB为4.55bit.  相似文献   

11.
设计了一种高速的逐次逼近型模数转换器(Successive Approximated Register Analog-Digital Converter,SAR ADC),与传统SAR ADC相比,该ADC除了采样电容阵列,额外使用了一个辅助数模转换器(Auxiliary Digital-Analog Converter,AUX-DAC)来实现2-bit/cycle.系统设计的SAR ADC使用了一个共享的内插预放大器,可以将输入信号和比较器隔离开,减小了比较器的回踢噪声.为了进一步提高转换速度,采用比较器交替工作模式,其输出结果直接送给电容阵列进行处理,与传统SAR ADC相比大大减小了逻辑延时.由于架构中使用了多路比较器,因此采用前台校准技术用来校正比较器的失调电压.后仿结果表明该ADC在400M采样速率和1.2V的电源电压下,可以实现48dB的SNDR,功耗为5.6mW,优值FoM为67fJ/conversion-step.  相似文献   

12.
一种具有超低跳变电压点的电压比较器   总被引:1,自引:1,他引:1  
针对CMOS集成电路中高精度低跳变电压点电压比较器设计的难点,设计了一种具有超低跳变电压点的新型电压比较器,其特点是利用输入失调电压来设置比较器的跳变点电压值,满足了许多需要用到此类比较器而用传统方法无法满足要求的场合,电路在1.2μmBiCMOS工艺下实现。比较器的跳变点电压低达45.5mV,且可以根据需要方便地予以调节.该比较器最小分辨率为±0.5mV,具有结构简单和通用性好的特点,可广泛应用于不同的SoC环境.  相似文献   

13.
针对单极型非晶氧化物薄膜晶体管(TFT)逻辑电路存在较大功耗等问题,提出一个采用动态负载的三级架构反相器.该反相器基于Pseudo-CMOS(伪互补金属氧化物半导体)拓扑结构,采用由输出信号驱动的动态负载替代Pseudo-CMOS反相器中的二极管连接负载,使输入级的输入管与负载管驱动信号互补,实现反相器零静态电流,并弱化了功耗与摆幅的制约关系.基于TFT的电流公式,讨论了反相器中晶体管的宽长比对输出摆幅和功耗的影响,通过优化晶体管的宽长比进一步提高输出摆幅,降低电路功耗.在Silvaco软件中仿真验证结果表明:在相同的工艺条件下,与Pseudo-CMOS反相器相比,采用动态负载的三级架构反相器输出摆幅提高了13.13%,并显著降低了静态电流.  相似文献   

14.
提出了一种基于伪随机补偿技术的流水线模数转换器(ADC)子级电路.该子级电路能够对比较器失调和电容失配误差进行实时动态补偿.误差补偿采用伪随机序列控制比较器阵列中参考比较电压的方式实现.比较器的高低位被随机分配,以消除各比较器固有失调对量化精度的影响,同时子ADC输出的温度计码具有伪随机特性,可进一步消除MDAC电容失配误差对余量输出的影响.基于该子级电路设计了一种12位250 MS/s流水线ADC,电路采用0.18μm 1P5M1.8 V CMOS工艺实现,面积为2.5 mm2.测试结果表明,该ADC在全速采样条件下对20 MHz输入信号的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,积分非线性误差(INL)为-0.4~+0.65 LSB,微分非线性误差(DNL)为-0.2~+0.15 LSB,功耗为320 mW.  相似文献   

15.
为实现高速低功耗的模数转换,设计了一个工作电压为3.3 V,采样精度为10 bit,采样频率为40 MS/s,流水线结构的模数转换器(ADC).该ADC基于0.35μm互补金属氧化物半导体(CMOS)工艺,通过优化运算跨导放大器(OTA)和低失调动态比较器电流,提高了转换精度,降低了功耗.ADC采用差分输入输出电路,减小了系统噪声的影响.其信噪比为58.3 dB,有效位数为9.4 bit,核心电路面积为1.2 mm×0.8 mm,功耗小于30 mW.  相似文献   

16.
本文设计了一款低功耗12-bit 50-MS/s逐次逼近型模数转换器,提出了一种动态比较器失调电压校正技术,取代了采用预放大器降低比较器失调电压的传统方法,解决了比较器低功耗和高精度之间的矛盾;基于时分复用的方法,改进了转换器核心数字逻辑,只需传统结构1/2的硬件电路便能实现相同的功能.此外,本文针对桥接电容和寄生电容引入的非线性问题做了详细的分析和公式推导.本设计采用SMIC 65nm标准CMOS工艺,核心芯片供电电压为1.2V,采样速率为50MS/s,版图后仿真结果表明,该ADC可达到71.5dB的信噪比和84.5dB的无杂散动态范围,功耗为4mW,芯片核心面积为0.3×0.2mm2.  相似文献   

17.
文章设计了一种用于高分辨率有源矩阵有机发光二极体(active-matrix organic light-emitting diode, AMOLED)手机显示驱动芯片的移动产业处理器接口(Mobile Industry Processor Interface, MIPI)电路,基于移动电话的显示屏串行接口(Display Serial Interface, DSI)协议设计了物理层电路,对于图形数据采用高速传输,对于指令采用低速传输,这样在保证数据传输速度的同时节省了功耗;为了确保高速比较器的精度,设计了高速比较器校准模块来减小输入失调引起的误差。该电路采用UMC 80 nm的CMOS工艺,高速比较器的精度为5 mV,后仿实现了单通道1 GHz的传输速率,实现了高速高精度的设计目标。  相似文献   

18.
基于0.13,μmCMOS工艺,设计了一款适用于均衡器系统的高速低失调电压的限幅放大器.电路设计中采用有源负载电感效应技术来提高系统的带宽;同时,为了优化由器件间失配导致的失调电压,提出了一种改进的失调电压消除技术.通过在负反馈环路中使用18,pF的电容来构建低频滤波器,该技术可以实现22.8,kHz的高通截止频率.蒙特卡罗仿真结果表明,该放大器输出端的直流失调电压均值为78.48,μV,标准差为3.73,mV.工作在1.8,V电源电压下,限幅放大器的带宽为6.0,GHz,增益为24.2,dB,功耗为23.6,mW,版图面积为0.030,6,mm2(170,μm×180,μm).  相似文献   

19.
以“输入缓冲,输出锁存”为基本思路,采用不同的总线隔离器将外设与总线隔离,输入口用三态缓冲器,输出口用数据锁存器。另设计一个输入/输出端口,仅用一个地址就能实现数据的输入和输出。  相似文献   

20.
一种失调电压补偿电容比例型带隙基准源设计   总被引:1,自引:0,他引:1  
设计了一种全新的电容比例型带隙基准源,用电容比例取代了通常的电阻比例,有效地减小了电路设计误差以及电路的功耗,理论失调电压可获补偿.电路采用Cadence Spectre软件仿真,Charter 0.35μm CMOS工艺库实现.仿真结果表明,该电路具有极低的电路功耗(8μW),其直流电源抑制比PSRR达到50 dB,温度系数为3×10-5V/℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号