首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Measurements of Pb in the well-preserved and dated snow and ice layers in glaciers can be used to recon- struct the past changes of atmospheric lead concentra- tions and to determine the trends of atmospheric pollu- tion. The lead data obtained from Greenland ice cap revealed severe air pollution in the Northern Hemi- sphere over the past three millennia. This lead pollution started from as early as Rome times[1], and increased remarkably from the Industrial Revolution to the end of the 1960…  相似文献   

2.
The total activity variation with depth from a 41.6 m Muztagata ice core drilled at 7010 m, recorded not only the 1963 radioactive layer due to the thermonuclear test, but also clearly the radioactive peak released by the Chernobyl accident in 1986. This finding indicates that the Chernobyl nuclear accident was clearly recorded in alpine glaciers in the Pamirs of west China, and the layer can be potentially used for ice core dating in other high alpine glaciers in the surrounding regions.  相似文献   

3.
Wu  GuangJian  Yao  TanDong  Xu  BaiQing  Tian  LiDe  Li  Zhen  Duan  KeQin 《科学通报(英文版)》2008,53(16):2506-2512
Based on the oxygen isotope ratio and microparticle record in ice cores recovered at Mt. Muztagata, Eastern Pamirs, the seasonal variations of atmospheric dust have been reconstructed for the past four decades. High dust concentrations and coarser particle grains have the similar trend with oxygen isotope value. Our statistical results indicate that 50%--60% high dust concentration samples occur during the season with high oxygen isotope values (summer), while low dust storm frequency during spring and winter. Back-trajectory analysis shows that the air mass hitting Muztagata predominately came from West Asia (such as Iran-Afghanistan Plateau) and Central Asia, which are the main dust source area for Muztagata. Dust storms in those source areas most frequently occur during summer (from May to August), while frequent dust storm events in northern China mainly occur during spring (March to May). Regions in the path of Asian dust transport, such as in Japan, the North Pacific, and Greenland, also show high dust concentrations during spring (from March to May). Our results indicate that dust storms have different seasonality in different regions within Asia.  相似文献   

4.
Based on the study of oxygen isotope and microparticle in the Guliya ice core,atmospheric dust and environmental changes in the northwest Tibetan Plateau since the last interglacial were revealed.The microparticle record indicates that low dust load on the Plateau in the interglacial.Particle concentration increased rapidly when the climate turned into the last glacial and reached the maximum during the MIS 4.In the Last Glacial Maximum, however,the enhancement of microparticle concentration was slight,differing to those in the Antarctic and Greenland.On the orbital timescale,both the temperature on the Tibetan Plateau and summer solar insolation in the Northern Hemisphere had their impact on the microparticle record,but the difference in phase and amplitude also existed. Though having the same dust source, microparticle records in the ice cores on the Tibetan Plateau and the Greenland seem to have different significance.  相似文献   

5.
Hou  Shugui  Qin  Dahe  Yao  Tandong  Zhang  Dongqi  Chen  Tuo 《科学通报(英文版)》2002,47(20):1746-1749
Three ice cores recovered from the Himalayas (i.e. the East Rongbuk Glacier and the Far East Rongbuk Glacier at Mt. Qomolangma (Everest), and the Dasuopu Glacier at Xixiabangma) show a sharp decline in the accumulation rates since the 1950s, which is consistent with the precipitation fluctuation over India and the low northern latitude zone (5°-35°N). Correspondingly, an increasing trend is observed for the ice core accumulations from the central and northern Qingh ai-Tibetan Plateau (i.e. the Xiao Dongkemadi Glacier in the central Tanggula Mountains, the Guliya Ice Cap in the western Kunlun Mountains, and the Dunde Ice Cap in the Qilian Mountains) since the 1950s, which is consistent with the precipi tation fluctuation over the middle-high northern latitude zone (35°-70°N). However, the variation magnitude of the high-elevation ice core accumulations is more significant than that of precipitation at the low-eleva- tion places, suggesti ng its extra sensitivity of high-elevation areas to climatic change. The inter-d ecadal abrupt change of the African-Asian summer monsoon in the1960s may attribute to the recent ice core accumulation change during the recent decades.  相似文献   

6.
Evidence for the “8.2 ka cold event” has been provided mostly from the circum-North Atlantic area. However, whether this cold event occurred in other places is a key to understanding its cause. Here, we provide the evidence for the “8.2 ka cold event” from the Guliya ice core in the northwest Tibetan Plateau, and it was found that the peak cooling (~8.3—8.2 ka) in this ice core was about 7.8—10℃, which was larger than the cooling in the North Atlantic region. The primary causes for this episode were diminished solar activity and weakened thermohaline circulation. Moreover, another weak cold event, centered about 9.4 ka, was also recorded in the Guliya ice core record. These two cold events were concurrent with the ice-rafting episodes in the North Atlantic during the early Holocene, which implies that the millennial-scale climatic cyclicity might exist in the Tibetan Plateau as well as in the North Atlantic.  相似文献   

7.
In order to understand the relationship between the community structure of bacteria in ice core and the past climate and environment, we initiated the study on the microorganisms in the three selected ice samples from the Malan ice core drilled from the Tibetan Plateau. The 16S ribosomal DNA (rDNA) molecules were directly amplified from the melt water samples, and three 16S rDNA clone libraries were established. Among 94 positive clones, eleven clones with unique restriction pattern were used for partial sequence and compared with eight reported sequences from the same ice core. The phylotypes were divided into 5 groups: alpha, beta, gamma proteobacteria; CFB, and other eubacteria group. Among them, there were many “typical Malan glacial bacteria“ pertaining to psychrophilies and new bacteria found in the ice core. At a longer time scale, the concentration distribution of “typical Malan glacial bacteria“ with depth showed negative correlation with temperature variations and was coincident with dirty layer. It implied the influence of temperature on the microbial record through impact on the concentrations of the “typical Malan glacial bacteria“. In addition, the nutrition contained in ice was another important factor controlling the distribution of microbial population in ice core section. Moreover, the result displayed an apparent layer distribution of bacterial community in the ice core section, which reflected the microbial response to the past climatic and environmental conditions at the time of deposition.  相似文献   

8.
The time series of accumulation in recent 300 years correlated well with solar activity in Dasuopu ice core. Results of spectrum analysis on the accumulation time series of the Dasuopu ice core shows that there are some periods that coincide with the periods of solar activity. By comparing the long-time change trend of the accumulation in the Dasuopu ice core with various kinds of indexes of solar activity intensity, a negative correlation is found between the trend and solar activity.  相似文献   

9.
We present a 550-year ice-core pollen record with a 5-year resolution from the Puruogangri ice field in the central Tibetan Plateau.Analysis of the relationship between pollen record and instrumental observations suggests that the sum of the steppe and meadow pollen taxa is a good indicator of summer (June-August) temperature,whereas the ratios of Cyperaceae/(Gramineae+Artemisia) [Cy/(G+A)] as well as M/S (meadow to steppe percentages) are indicative of humidity changes in this region.Together with δ18O and...  相似文献   

10.
Annual accumulation records covering 1935 to 2004 were reconstructed using Geladaindong ice core in the source of Yangtze River. A significant positive correlation between annual accumulation and precipitation from nearby meteorological stations was found, suggesting ice core accumulation could be taken as a precipitation proxy in the region. In the past 70 years, precipitation in the Geladaindong region was low from 1930s to early 1960s, and the lowest value occurred in the later 1950s. Since 1960s, precipitation increased dramatically and reached the maximum around 1980s, then decreased slightly in 1990s. By using Mann-Kendall rank statistical test method, a change point for precipitation was determined in 1967. Analysis of the atmospheric circulation over the Tibetan Plateau suggested that, compared with the southwest wind during the low precipitation period (before 1967), it extended about 2 latitudes northward during high precipitation period (after 1967). Moreover, during the high precipitation, the trough over the Bal Karshi Lake was also enhanced, and both the meridional wind and vapor transporting displayed a remarkable aggrandizement.  相似文献   

11.
12.
By the analyses of Guliya ice core on the Tibetan Plateau, it was found that the calcium (Ca^2 ) originated from the terrestrial source is the main cation of soluble aerosol and a good proxy of the atmospheric component and environment in the mountain ice core located in the mid-low latitude arid regions. Evident variation of Ca^2 concentration has been found in the Guliya ice core since the Last lnterglaciation with two relatively strong increase periods and two weak increase periods. These variations are generally related to climatic changes: high Ca^2 concentration periods coincide with cold periods and low Ca^2 concentration periods coincide with warm periods. However, Ca^2 concentration does not always decrease (increase) with climate warming (cooling). The magnitude and phase of Ca^2 concentration does not always match temperature either. The changes of atmospheric circulation, land surface condition and atmospheric humidity might be important factors which influence Ca^2 concentration besides temperature.  相似文献   

13.
文章对国际地震中心陨杂悦(International Seismological Centre)和美国地质调查所震中初定报告孕阅耘(The Preliminary Determination of Epicentres Bulletin)提供的地震数据资料,以及西藏大学地震台网收集的地震数据资料进行分析研究。结果显示,青藏高原属于地质构造与地震活动极为活跃的区域,自1900年以来曾发生过3780次以上地震;青藏高原内部的地震绝大部分都属于浅源地震(源深度小于50km),以拉萨为中心的周边地区属浅源地震的高频率发震区。  相似文献   

14.
Ozone mini-hole occurring over the Tibetan Plateau in December 2003   总被引:8,自引:0,他引:8  
Since the Antarctic ozone-hole was discovered[1], the ozone depletion in stratosphere and its effect on climate and environment have become the global focus[2-6]. In China, since Zhou et al.[7] in 1994 and later Zou[8] dis- covered the total ozone valley …  相似文献   

15.
Thermal Stratification in Lake Zige Tangco, Central Tibetan Plateau   总被引:1,自引:0,他引:1  
Lake Zige Tangco is an endorheic saline lake in central Tibetan Plateau. Investigations of 1998 and 1999 revealed that is was a typical stratified lake. The characteristics of thermal stratification of the lake have been extensively discussed from 4 aspects, i.e. thermocline, hydrochemistry and dissolved oxygen, stable isotope oxygen, and stability. The thermocline coupled with chemocline was further analyzed.  相似文献   

16.
17.
Carbonaceous particles in Muztagh Ata ice core,West Kunlun Mountains,China   总被引:1,自引:0,他引:1  
Liu  XianQin  Xu  BaiQing  Yao  TanDong  Wang  NingLian  Wu  GuangJian 《科学通报(英文版)》2008,53(21):3379-3386
Carbonaceous particles concentrations of OC and EC are determined using a two-step gas chroma- tography system in Muztagh Ata ice core covering the time period of 1955--2000. Over the period represented by the core, OC and EC concentrations appear to have changed significantly, varied in the range of 17.7--216.7 and 6.5--124.6, and averaged 61.8, 32.9 ng·g^-1, respectively. The average concentration of EC in Muztagh Ata ice core is much lower than that in an Alpine ice core record (100--300 ng·g^-1) during the same period, but it is a factor of 14 in Greenland ice core (2.3 ng·g^-1), this may induce a strong impact on the snow albedo in the last 46 years in our study area. Observations indicate two periods with obviously high deposition concentrations (1955--1965 and 1974--1989) and two periods with low concentrations (1966--1973 and 1990--1995), as well as a recent increasing trend. By comparing EC and SO4^2- concentration variations and deciphering OC/EC ratios recorded in the same ice core, we can judge roughly that the carbonaceous particles deposited in Muztagh Ata ice core were attributed to fossil fuel combustion sources.  相似文献   

18.
The research on extrempholic microorganisms in glacial low-temperature environment receives more attention than ever before. Due to the successive chronological records in ice core, it is important to initiate microbiological studies on ice core samples. 23 samples from one ice core,drilled from central Qinghai-Tibetan Plateau, were analyzed.The number of total microorganisms and culturable microorganisms in different layers showed that it related with the content of dust in ice. It is suggested that the distribution of microorganisms in ice depends on the transportation of materials during glacier development. The bacteria diversity in Malan Glacier was analyzed by 16S rDNA sequencing methods, which showed that many sequences were similar to known psychrophilic bacteria.  相似文献   

19.
全球变暖背景下青藏高原多年冻土分布变化预测   总被引:3,自引:0,他引:3  
根据青藏高原及周边地区温度数据和多年冻土分布, 模拟2099年青藏高原多年冻土面积与各类多年冻土分布的变化情况。结果显示: 青藏高原地区在年均温升高1.8ºC的情况下, 大片多年冻土在高原西北部收缩至76.6°E 以东, 岛状多年冻土在高原东南部大面积消融, 高山多年冻土在帕米尔高原、喜马拉雅山地区收缩明显, 多年冻土总面积是现代的83.4%; 在年均温升高4ºC的情况下, 大片多年冻土收缩至77.4°E以东, 岛状多年冻土中部小范围退缩, 高山多年冻土在祁连山地区消融明显, 仅在帕米尔高原、喜马拉雅山山脉、祁连山山脉、横断山脉等高海拔山地发育, 多年冻土总面积是现代的73%; 在年均温升高6ºC的情况下, 大片多年冻土收缩至78°E, 岛状多年冻土仅在中西部发育, 高山多年冻土在部分极高山地区零星发育, 多年冻土总面积是现代的50.8%。  相似文献   

20.
The detailed electrical conductivity measuremerit (ECM), trace chemical compositions and microparticles concentration analysis are performed for BH8 ice core from the depth of 126.0m to 130.0m at Vostok Station. At depth 128.7m, a volcanic signal 4726 a B.P. is detected. The volcanic sulphate flux is 95.8 kg·km^-2, sulphate peak concentration 1352.8 ng·g^-1, duration time about 10.1 years, comparable with some well-known volcanic events. The results indicate that it seems to be a relatively large scale, long lasting volcanic signal with farther volcanic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号