共查询到17条相似文献,搜索用时 62 毫秒
1.
一种基于局部特征融合的表情识别方法 总被引:1,自引:1,他引:1
表情识别是人工智能和模式识别的研究热点,而特征融合方法则是表情识别中重要的技术方法之一.基于嘴部的Gabor小波特征和几何特征对表情识别有重要作用,提出一种仅用嘴部不同特征进行特征融合的表情识别方法.该方法将嘴部的Gabor小波特征和几何特征进行特征融合后再使用最近邻分类器分类.根据不同样本库、不同识别方法的对比实验结... 相似文献
2.
基于SVM信息融合方法的人脸表情识别 总被引:1,自引:0,他引:1
提出一种基于支持向量机(SVM)的信息融合方法进行人脸表情识别.该方法首先对 预处理后的人脸图像进行局部特征和整体特征的提取;然后用最小距离分类器、最近邻距离 分类器、最大相关分类器、径向基函数(RBF)神经网络分类器进行表情识别;最后构造一 个三阶的多项式支持向量机对多个分类器的输出进行决策融合以达到人脸表情识别的目的. 相似文献
3.
刘皓 《聊城大学学报(自然科学版)》2014,(4):100-104
当前人脸检测系统主要使用的是基于主成分分析算法和神经网络技术,本文提出了识别不同特征点的另一种技术,所提出的识别系统用来实现特征提取、主成分分析和人工神经网络,即用特征脸和主成分分析算法进行人脸识别.在主成分分析算法中,通过识别初始人脸图像集得到特征向量和特征脸,然后这些人脸被投射到特征脸上以计算权重,这些权重建立人脸数据库以便通过神经网络进行人脸识别.测试结果表明,其准确率达82.1%,达到了理想效果. 相似文献
4.
剪切波变换是一种新型多尺度几何分析方法.利用剪切波变换良好的方向敏感性和各向异性,提出了一种基于剪切波变换的人脸表情识别方法.实验表明,该方法在日本JAFFE和加拿大瑞尔森RML人脸表情数据库上的识别率分别达到了98.58%和95.83%. 相似文献
5.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部\"三庭五眼\"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。 相似文献
6.
基于人脸局部特征和SVM的表情识别 总被引:1,自引:0,他引:1
提出了一种基于人脸局部特征的表情识别方法.首先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机(SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机(SVM)表情分类器,确定表情图像的所属类别.对JAFFE人脸图像数据库进行仿真实验.结果表明,该方法要优于一般的基于整体特征的人脸表情识别方法. 相似文献
7.
在采用特征融合方法进行人脸表情识别时,通常会产生高维特征问题.针对这一问题,提出一种基于两步降维和并行特征融合的表情识别新方法.利用主成分分析法(principal component analysis,PCA)分别对待融合的两类特征在实数域进行第一次降维,将降维后的特征进行并行特征融合;为了解决在并行融合过程中产生的高维复特征问题,提出一种基于酉空间的混合判别分析方法(unitary-space hybrid discriminant analysis,unitary-space HDA)作为酉空间的特征降维方法.该方法是实数域混合判别分析法在酉空间内的扩展,并兼顾了复特征数据的类间判别信息及全局描述信息.对局部二值模式(local binary pattern,LBP)和Gabor小波特征进行融合,并在JAFFE和CK+表情数据集上开展对比实验.实验结果表明,该方法具有较好的高维复特征数据降维能力,并且有效提高了表情识别率. 相似文献
8.
在自然环境中各种因素的干扰下,人脸表情信息匹配的识别率受到严重影响,针对此问题,提出一种改进的基于VGGNet16(visual geometry group network16)的网络模型.在VGGNet16模型的侧方添加一系列的侧输出层,并在该侧输出层添加不同的卷积核,通过上采样和下采样方法连接侧输出层的上下2层,... 相似文献
9.
针对传统Gabor变换在提取表情特征时,冗余较大、特征维数较高的不足,结合ASM自动特征定位技术,提出了一种基于特征点Gabor特征和ASM形状特征相融合的面部表情识别方法. 实验表明,两种特征的融合,可有效地利用特征点的局部纹理信息和脸部器官的整体形状信息,达到了更好的面部表情识别效果. 相似文献
10.
为充分利用视频中人脸表情与中性表情的差异,提出了一种新的对非特定人脸的表情识别方法.该方法针对低复杂度的视频表情识别应用场景,利用参考中性表情的特征点偏移角表征被测表情的变化信息,同时利用二维主成分分析(2DPCA)法提取被测表情帧的二维主成分特征,从而综合使用表情的动态和静态特征,并使用支持向量机分类器进行表情分类识别.在 JAFFE 人脸表情库上的实验结果表明,相对于仅使用 2DPCA 的静态图像表情识别方法,文中所提方法的人脸表情识别准确率平均提高 7%. 相似文献
11.
有效提取特征有利于提高后续人体动作识别的准确率。针对人体动作识别时方向梯度直方图(histogram of oriented gradient,HOG)特征维数过高和相似动作不好区分的问题,提出一种基于特征优选和图像相似度的人体动作识别算法。实验对比三种降维方法主成分分析法(principal component analysis,PCA)、PCA+Pearson、PCA+Spearman处理后的动作识别率,证明PCA+Pearson相关系数的降维效果最佳。同时将全局特征八星模型与降维后的局部特征HOG特征组合在一起全面表征人体动作,并计算相邻两帧图像相似度,自适应分配一个判别周期内单帧支持向量机分类结果的统计权值,最后二次分类人体姿态识别结果。在标准数据集KTH上进行实验,该算法识别准确率为94. 5%,较其他方法有所提高,在视频人体动作识别领域有较好应用价值。 相似文献
12.
潘继斌 《湖北师范学院学报(自然科学版)》2008,28(4)
分析了现有的多特征数据融合方法.针对双特征信息融合问题,建立了新的数学模型,提出了融合基本原理,给出了基于大间隔分类器设计技术的支持向量机融合方法.简单实例说明了算法的有效性. 相似文献
13.
14.
15.
16.
基于彩色空间多特征融合的表情识别算法研究 总被引:1,自引:0,他引:1
目前的人脸表情识别方法大多是在灰度图像上采用单一特征算子,如 Local Phase Quantization(LPQ),Local Binary Patterns(LBP),Histograms Of Oriented Gradients(HOG),Gabor等,进行分类识别,但这类方法在复杂光照条件下识别率并不理想。为取得较好的识别率,本文首次提出了基于彩色图像多特征融合的表情识别算法。该算法首先在不同彩色分量上分别提取LPQ、LBP、HOG及Gabor多种特征,然后对高维特征进行线形鉴别分析并采用最近邻法进行表情分类,最后对多特征分类结果采用Adaboost算法进行融合。本文算法在具有复杂光照条件的Multi-PIE人脸库上进行了验证,取得了88.30%的平均识别率。实验结果表明:相比于基于灰度图像的单一特征识别算法,本文提出的算法能较大幅度地提高人脸表情识别率。 相似文献
17.
支持向量机(SVM)是一种崭新的机器学习方法,建立在结构风险最小化原理基础上,寻找一个最优分类超平面,引进核函数将低维空间向量映射到高维空间.此方法能解决小样本、非线性及高维模式识别中的问题.鉴于此,将SVM应用于多传感器信息融合,并针对多类型目标识别问题,采用“oneagainstall”方法构造多元分类器.实验中比较了采用不同核函数构造的SVM的分类效果,结果表明SVM具有较高的识别率,其中三项多项式核函数构造的SVM的识别率最高,可达到93.2%.另外,还比较了单传感器和多传感器融合的识别结果,单传感器的识别率只有63.7%,大大低于多传感器融合的识别率. 相似文献