首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
为更好地将表面肌电信号应用于智能轮椅的人机接口,提出了一种基于SVM的表面肌电信号动作模式的识别算法。采用一对一的方式构造SVM多值分类器,按照投票原则确定测试样本的类别归属,并与动作模式识别的核fisher算法和RBF神经网络算法进行了对比分析。实验结果表明,支持向量机(SVM)算法识别率更高,可以取得理想的学习效果和泛化性能,很好地解决小样本、非线性及局部极小值问题。  相似文献   

2.
由于传统的人工康复手段已经很难满足患者对康复治疗的需求,因此提出一种基于表面肌电信号的下肢康复主动训练模式。通过提取患者下肢肌电信号在时域内的特征量,经BP神经网络辨识患者的运动意图,最后将辨识结果作为驱动下肢康复机器人的信号源,实现对患者的主动康复训练。根据临床试验中患者在主动训练前后各项生命体征数据稳定,以及主动训练后神经功能和运动功能具有显著恢复效果患者数较传统训练模式提升了50%,表明该主动训练模式的可行性和安全性。为今后深入研究主动康复训练奠定了理论和实践基础。  相似文献   

3.
针对大多数肌电信号只进行特定肢体动作识别而没有对肢体进行外加负载识别的问题,提出一种基于表面肌电信号(surface electromyography, s EMG)的负载识别方法。首先,采用4通道表面电极采集肘关节在不同负载下的s EMG信号;然后,利用时域、频域特征提取方法对s EMG信号进行特征提取构成特征向量;最后,利用支持向量机(support vector maching, SVM)、BP神经网络和RBF神经网络对特征向量进行分类识别。结果表明以时域特征值识别,SVM的识别效果最佳,准确率为96.2%;以频域特征值识别,BP神经网络的识别效果最佳,准确率为87.5%;以时、频域组合特征值识别,RBF神经网络的识别效果最佳,准确率为90.4%。可见通过s EMG信号进行负载识别具有一定的可行性,为s EMG信号的广泛应用奠定基础。  相似文献   

4.
支持向量机在表面肌电信号模式分类中的应用   总被引:3,自引:0,他引:3  
采用小波变换的方法对实验采集的原始四通道表面肌电信号(sEMG)进行了分析,并提取小波分解系数的奇异值构建特征矢量,利用“一对一”分类策略和二叉树设计的多类支持向量机(SVM)分类器,很好地实现了对前臂8种运动表面肌电信号的模式分类,8种运动模式的平均识别率为98.75%.研究表明SVM分类准确率明显优于传统的BP神经网络、Elman神经网络和RBF神经网络分类器,且识别精度高,鲁棒性好,对肌电信号及其他非平稳生理电信号的模式识别,提供了一种具有良好应用前景的新方法.  相似文献   

5.
分析上臂动作与上臂肌肉的关系,通过表面肌电信号正确识别上臂的动作,是实现上肢功能修复的关键.设计了上肢曲臂、伸臂、水平外摆、水平内收、手臂垂直外旋和手臂垂直内旋6个动作,分别同时记录三角肌、肱二头肌和肱三头肌的表面肌电信号,采用时域和频域的方法提取特征值,通过人工神经网络进行识别,识别率达到90%以上.结果表明,通过上肢肱二头肌、肱三头肌和三角肌的表面肌电信号识别上臂的运动是可行的,为应用生物电信号控制机械假肢和实现脊髓损伤功能障碍修复奠定理论基础.  相似文献   

6.
绝缘手套法是配网带电作业的主要作业方式,为获取穿戴绝缘手套的带电作业人员上肢肌肉的疲劳特性及其诱发的肌肉骨骼系统疾患(work-related musculoskeletal disorders,WMSDs)的风险,开展了基于表面肌电信号(surface electromyogra-phy,sEMG)的绝缘手套法带电作...  相似文献   

7.
基于HMM的表面肌电信号模式分类   总被引:9,自引:0,他引:9  
按等时间间隔将表面肌电信号(SEMG)划分为不同的段,利用小波变换对其进行特征提取,借助隐马尔可夫模型(HMM)的动态建模能力来感知不同动作模式下SEMG的时变特性.具体应用时,先根据样本对各动作模式下的HMM进行训练,待各模型参数稳定后,再利用HMM对特征提取后的SEMG进行模式分类.实验结果表明:该方法具有很好的分类识别率.在6个手部动作识别中,上翻、下翻、内旋和外旋4种动作的识别准确率均在90%以上.  相似文献   

8.
为研究不同运动模式下基于肌电信号的下肢多关节连续运动预测,通过支持向量机对肌电-运动的映射关系进行训练,实现对下肢髋、膝和踝3个关节矢状面内的连续运动预测.由10位健康受试者的运动预测和统计分析可知:在适速行走过程中,髋、膝和踝关节的关节角度预测均方根误差分别9.36°,10.82°和6.87°;在不同运动模式下,关节的运动预测值与测量值之间均表现出一定的相关性,其中,膝和髋关节的预测值与测量值之间相关系数均大于0.72,表现出比较明显的相关性.实验结果表明:基于肌电信号进行下肢多关节连续运动预测,尤其是在适速行走时对膝和髋关节的运动预测是可行的.  相似文献   

9.
基于CSP与SVM算法的运动想象脑电信号分类   总被引:7,自引:2,他引:5  
针对基于两种不同意识任务(想象左手运动和想象右手运动)的脑机接口,使用共空间模式(common spatial pattern,CSP)算法对BCI 2003竞赛数据进行特征提取;基于滑动时间窗,利用CSP方法对C3,Cz和C4位置的脑电信号进行处理.利用支持向量机对特征进行分类,获得最大分类正确率82.86%,最佳时间点4.09 s,最大互信息0.47 bit,最大互信息陡度0.431 bit/s.与BCI 2003竞赛结果相比,最大互信息陡度有了显著提高,证明该方法更适合BCI实时系统的要求.  相似文献   

10.
 基于P300事件相关电位的脑机接口(BCI)系统中,有效的P300特征提取及分类是系统开展后续工作的关键。应用时间序列自回归(AR)模型及支持向量机(SVM)算法对脑电信号进行P300分类;对10导联脑电数据分别分段,并对每段建立AR模型;采用最小二乘法进行AR模型系数估计,由估计出的系数序列构成特征向量,送入SVM进行模式分类。实验针对BCI Competition Ⅲ dataset Ⅱ数据集进行了方法验证,提出的方法在15试次情况下识别正确率达93.5%。实验及数据分析结果表明,应用SVM分类器对AR模型提取出的系数序列特征向量进行分类,具有较好的系统识别正确率,可为实现基于P300的BCI系统实际应用奠定理论和实验基础。  相似文献   

11.
基于密度法的模糊支持向量机   总被引:13,自引:0,他引:13  
针对支持向量机对训练样本内的噪音和孤立点特别敏感、极大地影响了支持向量机分类性能的弱点,提出了一种基于密度法的模糊支持向量机,在支持向量机中引入样本密度模糊参数,从而减弱了噪音以及孤立点对支持向量机分类的影响.实验结果证明,在抗击孤立点和噪音点的干扰方面,上述方法优于类中心向量方法以及类中心点距离方法,取得了很好的效果.这一方法大大提高了支持向量机分类的泛化能力,从而大大提高了支持向量机的应用范围.  相似文献   

12.
By utilizing hyperbolic tangent function,we constructed a novel hyperbolic tangent loss function to reduce the influences of outliers on support vector machine (SVM) classification problem.The new lass fuinction not only limits the maximal loss value of outliers but also is smooth.Hyperbolic tangent SVM (HTSVM) is then proposed based on the new loss function.The experimental results show that HTSVM reduces the effects of outliers and gives better generalization performance than the classical SVM on both artificial data and UCI data sets.Therefore,the proposed hyperbolic tangent loss faction and HTSVM are both effective.  相似文献   

13.
基于支持向量机的增量学习算法   总被引:1,自引:0,他引:1  
通过对支持向量机KKT条件和样本间关系的研究,分析了新增样本加入训练集后支持向量的变化情况,提出一种改进的Upper Limiton Increment增量学习算法.该算法按照KKT条件将对应的样本分为3类:位于分类器间隔外,记为RIG;位于分类间隔上,记为MAR;位于分类间隔内,记为ERR.并在每次训练后保存ERR集,将其与下一个增量样本合并进行下一次训练.实验证明了该算法的可行性和有效性.  相似文献   

14.
支持向量机(SVM)是一种新的机器学习方法,已经广泛应用于模式识别和函数估计等问题中.针对现有的加权支持向量机(WSVM)和模糊支持向量机(FSVM)只考虑样本重要性而没有考虑属性重要性对分类结果的影响的缺陷,提出了基于样本属性重要度的支持向量机方法,该方法首先利用信息论中的信息增益技术计算各个样本特征属性对分类属性的重要度,然后对所有样本的同一特征属性的值分别用对应的属性重要度进行加权,最后所得数据集用于训练和测试SVM.数值实验的结果表明,该方法提高了分类器的分类精度.  相似文献   

15.
针对基于支持向量机的分类器训练时间过长问题,提出一种并行训练策略.该策略在并行程序设计上采用主从模式,将训练任务划分成若干个子任务,分配到多个从节点上计算,最后由主节点将各从节点上的训练结果收集,生成分类器模型.采用这种算法,使用了多组稀疏型和连续型的数据集,经过在自强3000高性能计算机上测试,实验结果表明该算法不仅能够保证多分类的高准确率,而且缩短了训练时间.  相似文献   

16.
基于支持向量机的武器装备研制项目风险评价方法   总被引:3,自引:0,他引:3  
李勘 《上海交通大学学报》2008,42(11):1851-1854
针对武器装备研制项目风险评价方法在实际应用中存在的问题,对支持向量机在武器装备研制项目风险评价中应用的可行性进行了分析,提出了基于支持向量机的武器装备风险评价模型.应用收集相关项目的数据资料进行了实证研究,并与神经网络和模糊综合评价法进行了比较分析.结果表明,基于支持向量机的评价模型具有良好的自学习性和特征提取能力,可为武器装备研制项目风险评价提供有益的参考.  相似文献   

17.
支持向量机方法已经成功地应用于解决分类和回归问题,但是在训练支持向量机时需要求解二次规划问题,使得支持向量机的训练时间过长,训练样本量越大,这个缺陷越明显.将超球方法与回归支持向量机相结合,提出一种增量学习的新方法.该方法使用两个同心超球缩减训练集,以达到提高训练速度的目的.通过分析表明,这种新的增量学习方法较普通支持向量机训练方法有较低的计算复杂度.实验结果表明,该算法可以在不降低预测准确性的同时减少大量建模时间.  相似文献   

18.
为节约实验成本, 提高工作效率, 提出利用计算的方法预测B细胞表位, 通过预测得到较为精确的结果。提取氨基酸的10个表位相关属性特征, 并使用支持向量机的分类方法对抗原表面氨基酸进行分类, 预测得到候选表位残基。最后通过15个测试例, 验证了笔者算法的有效性。  相似文献   

19.
基于主元分析与支持向量机的人脸识别方法   总被引:27,自引:1,他引:27  
基于支持向量机(SVM)在处理小样本,高维数及泛化性能等强方面的优势,提出了一种基于主元分析(PCA)与SVM的人脸识别方法,利用PCA方法对人脸图像进行特征提取,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别,剑桥ORL的人极数据库的仿真结构验证了本算法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号