首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
采用盐酸对活性炭纤维进行预处理,通过单因素实验和正交试验比较了不同处理条件对活性炭纤维的处理效果;通过碘吸附值研究处理前后活性炭纤维的吸附性能变化,通过低温液氮吸附表征活性炭纤维的比表面积及孔结构变化,并通过扫描电子显微镜(SEM)和傅立叶红外光谱(FTIR)表征活性炭纤维表面形貌及表面官能团的变化.实验结果表明,经盐酸处理后,活性炭纤维的吸附性能明显提高.且当盐酸质量分数为4%,振荡时间为50min时,其碘吸附值较原样提高24.89%,比表面积较原样增大27.45%,孔容由0.425 639mL·g-1增大为0.465 181mL·g-1,微孔数量增多;活性炭纤维表面形貌较原样变化不大,材料中的含氧官能团的吸收峰略微增强,苯环吸收峰逐渐消失.  相似文献   

2.
利用硅灰粉尘研制多孔陶瓷   总被引:2,自引:0,他引:2       下载免费PDF全文
以硅灰粉尘为主要原料制备高比表面多孔陶瓷.主要探讨粘土结合剂及不同烧结温度对该多孔陶瓷的孔结构及气孔率、体积密度等性能指标的影响,采用SEM、BET等分析测试手段表征各试样的微观结构.结果表明,硅灰粉粒子超细、比表面积大、成本低廉,是制造大比表面多孔陶瓷的理想原料.粘结剂的加入会降低样品的气孔率,确定5%(质量分数)的粘土为最佳,烧结温度选择为750℃,此时多孔陶瓷的气孔率为41.91%,强度为23.61 MPa,比表面积达到24.22m2·g-1.  相似文献   

3.
磷酸盐活化法制备椰壳纤维基活性炭研究   总被引:3,自引:0,他引:3  
采用正交试验设计实验方案,以椰纤维为原料,经炭化、活化等处理,研究磷酸盐活化制备高比表面积活性炭的实验方案与工艺条件,得到比表面积高,孔隙发达,吸附效果优异的活性炭.考查了活化剂配比、活化温度、活化时间、升温速率等因素对活性炭吸附性能及产率的影响,得到最佳的活化方案与工艺条件.并在实验的基础上探讨了活性炭的活化机理.  相似文献   

4.
活化剂种类对活性炭结构及性能的影响   总被引:1,自引:0,他引:1  
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂.  相似文献   

5.
"溶液吸附法测定活性炭比表面积"实验的改进   总被引:1,自引:0,他引:1  
研究了吸附荆的颗粒度、吸附时间、吸附温度、原始溶液浓度对吸附平衡的影响,确定了新的实验条件:粒状活性炭破碎至60.100目;70℃恒温振荡0.5h后,再于室温振荡吸附1.5h;原始溶液的溶质质量分数为2%左右.改进后,提高了实验精密度,缩短了实验时间.  相似文献   

6.
7.
KOH活化石油焦制备工艺对活性炭吸附性能的影响   总被引:3,自引:0,他引:3  
以固-固混合方式,用KOH活化石油焦制备了高比表面积活性炭,研究了活化温度、碱炭比、原料粒度、活化时间、预处理温度及氮气流速等因素对活性炭的碘值和亚甲基蓝吸附值的影响,并用液氮吸附法分析了高比表面积活性炭的孔隙结构.结果表明:活化温度、碱炭比、原料粒度、活化时间,以及中间处理温度和氮气流速对活性炭的碘值和亚甲基蓝吸附值均有明显的影响;在一定的条件下,可制备出比表面积大于3000m2/g、比孔容积达1.80cm3/g、碘吸附值为2714mg/g、亚甲基蓝吸附值为510mg/g的活性炭.活性炭的吸附特性可以通过石油焦原料的改性和各种工艺条件的优化进行调控.  相似文献   

8.
本文系统地讨论了用ST—03型表面与孔径测定仪测定脱硫用活性炭比表面积。这与传统的静态法和迎头色谱法相比,具有简便快速,灵敏度高,再现性好等优点,测试结果表明:R_S—1和R_S—2型活性炭的比表面积分别为209.3和546.15m~2/g,其具有发较达的中、大孔结构特征,与孔径分布的研究结果是一致的。  相似文献   

9.
以城市污水处理厂产生的脱水污泥为原料,采用化学活化法并结合传统的直接加热技术制备脱水污泥活性炭,研究了影响脱水污泥活性炭吸附特性的各种因素.研究结果表明:制备脱水污泥活性炭的优化条件是活化剂为5 mol·L-1ZnCl2+5 mol·L-1H2SO4混合溶液,固液比为1∶2.5,复配比为2∶1,浸渍时间为24 h,活化温度为600℃,活化时间为20 min.制备的脱水污泥活性炭碘吸附值为939.7 mg.g-1,产率为69.03%,其吸附特性优于商品活性炭.  相似文献   

10.
活性炭对挥发酚的吸附特性   总被引:1,自引:0,他引:1  
 利用活性炭对挥发酚进行吸附实验,通过测定挥发酚在水中的浓度变化情况,考查了在不同吸附剂用量、pH值、吸附时间、温度、起始浓度条件下,活性炭对挥发酚去除效果的影响。进而分析活性炭对挥发酚的吸附特性,为含挥发酚废水处理方案的设计提供参数。结果表明,在12℃下,吸附时间20min、活性炭的用量为0.7g/50mL,在不改变水样pH值条件下,挥发酚的去除率最高达96.04%,而且低起始浓度下挥发酚的去除效果明显高于高浓度下的去除效果。活性炭吸附挥发酚的等温线符合Freundlich方程式。  相似文献   

11.
以滇朴为碳源,通过化学活化法成功制备出高性能的活性碳材料.并对其结构、形貌及性能进行了表征.SEM照片结果表明,利用KOH活化而得到的活性碳材料仍然保留了滇朴的纤维结构.通过KOH活化处理,活性碳材料中存在大量的芳香环,石墨微晶结构变多.BET结果证明活化后的活性碳材料含有丰富的微孔结构,孔径约为3.5 nm.利用此类活性碳材料对卷烟主流烟气成分进行吸附实验,KOH活化的活性碳对烟气中有害成分表现出更好的吸附性能.  相似文献   

12.
以淀粉为原料,分别采用H3PO4活化法和物理-化学复合活化法制备活性炭,并将制备的活性炭组装成超级电容器。研究了制备工艺对活性炭孔结构及电容特性的影响;通过氮气吸附和SEM方法表征了淀粉基活性炭的孔结构和表面形貌,通过循环伏安曲线、恒流充放电、交流阻抗实验考察了其电化学性能。结果表明,比表面积与比电容并没有线性关系;物理-化学复合活化法在温度为850 ℃、活化时间为2h条件下,制备的淀粉基活性炭比表面积为1438 m2/g,比电容为150 F/g。  相似文献   

13.
以商品化活性炭为原料,在1mol/L盐酸环境下采用原位聚合法制备了聚苯胺/活性炭复合材料(PANI/C),复合材料中聚苯胺的质量分数为46.4%.用循环伏安、交流阻抗、恒流充放电测试等方法考察比较了新材料与原活性炭在1mol/L H2SO4溶液中的电容性能.结果表明,新材料的比容量和大电流充放电性能均优于碳材料.3.0mA/cm^2电流密度下,复合材料电极比容量高达448.7F/g,比原碳材料提高60%.  相似文献   

14.
以山西阳泉无烟煤为原料,NaOH为活性剂,采用化学活化法对煤基高比表面积活性炭的制备进行实验分析研究,着重考察了碱炭质量比、活化温度和活化时间对活性炭吸附性能的影响。结果表明,在碱炭比为4、活化温度为800℃、活化时间为1 h的条件下,可以制得比表面积为2 637 m2/g、总孔容为1.36 cm3/g、碘吸附值为2 893 mg/g、亚甲蓝吸附值为476 mg/g的煤基高比表面积活性炭。  相似文献   

15.
以晋城无烟煤为原料,先经浮选和酸洗脱灰,得到灰分1.2%的超低灰无烟煤,再将其与活化剂KOH按比例混合、粘结成型,并经活化处理制备高比表面积活性炭。主要考查了碱炭比、活化温度和活化时间对活性炭比表面积及收率的影响。结果表明,晋城超低灰无烟煤制备高比表面积活性炭的最佳工艺条件为:碱炭比5∶1,活化温度800℃、活化时间1 h,活性炭的BET比表面积为1 800.71 m2/g,孔径大小分布于0.3~5 nm之间,以微孔为主。  相似文献   

16.
以通用级沥青氧化纤维为原料经水蒸气活化制得沥青基活性炭纤维(PACF),讨论了工艺参数对PACF的比表面积、孔结构(孔容、孔径大小及分布)的影响。结果表明,PACF的比表面积随着活化温度的提高(850~950℃)而增加,同时,孔径变大,孔径分布变宽;在相同最终活化温度下(900℃),PACF的孔径及其分布随着水蒸气通入温度的不同而发生变化。  相似文献   

17.
活性炭处理含铅废水的试验研究   总被引:1,自引:0,他引:1  
铅是一种对人体危害极大的重金属元素,它对水体产生的污染严重影响人类的正常生活。采用活性炭为吸附材料,研究其对废水中铅的吸附作用和机理。研究内容分以下几方面:选用吸附剂粒径、吸附剂用量、搅拌时间、pH、废水浓度以及吸附剂再生等因素对吸附效果影响的探讨。试验结果表明,该活性炭可不选粒径直接使用,活性炭用量为2.0g/100mL,室温下搅拌(110r/min)30min,pH选择6-7,经处理后,废水的铅离子去除率最高可达99.3%,剩余浓度是0.08mg/L,低于《国家污水综合排放标准》(GB25466-2010)的一级标准。  相似文献   

18.
采用原位聚合法,以正硅酸四乙酯(TEOS)为原料、甲基三乙氧基硅烷(MTES)为疏水改性剂,活性炭为载体,制备疏水SiO2气凝胶修饰活性炭复合材料。采用接触角分析仪、N2吸附法、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)对疏水SiO2气凝胶修饰活性炭复合材料的表面特性和结构进行表征。结果表明:所制备的疏水SiO2气凝胶修饰活性炭复合材料的接触角为156°、比表面积为759.2 m2/g、孔体积为4.38 cm3/g,最可几孔径是32nm,孔径主要分布为1~50 nm,疏水SiO2气凝胶均匀地分散于活性炭表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号