首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation. PTEN helps govern the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN-deficient mice, excess ISCs initiate de novo crypt formation and crypt fission, recapitulating crypt production in fetal and neonatal intestine. The PTEN-Akt pathway probably governs stem cell activation by helping control nuclear localization of the Wnt pathway effector beta-catenin. Akt phosphorylates beta-catenin at Ser552, resulting in a nuclear-localized form in ISCs. Our observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of beta-catenin.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Plzf pushes stem cells   总被引:6,自引:0,他引:6  
  相似文献   

9.
10.
11.
Inactivation of TGF-beta family signaling is implicated in colorectal tumor progression. Using cis-Apc(+/Delta716) Smad4(+/-) mutant mice (referred to as cis-Apc/Smad4), a model of invasive colorectal cancer in which TGF-beta family signaling is blocked, we show here that a new type of immature myeloid cell (iMC) is recruited from the bone marrow to the tumor invasion front. These CD34(+) iMCs express the matrix metalloproteinases MMP9 and MMP2 and the CC-chemokine receptor 1 (CCR1) and migrate toward the CCR1 ligand CCL9. In adenocarcinomas, expression of CCL9 is increased in the tumor epithelium. By deleting Ccr1 in the background of the cis-Apc/Smad4 mutant, we further show that lack of CCR1 prevents accumulation of CD34(+) iMCs at the invasion front and suppresses tumor invasion. These results indicate that loss of transforming growth factor-beta family signaling in tumor epithelium causes accumulation of iMCs that promote tumor invasion.  相似文献   

12.
Panning for pancreatic stem cells   总被引:4,自引:0,他引:4  
Serup P 《Nature genetics》2000,25(2):134-135
  相似文献   

13.
14.
During embryogenesis, multipotent progenitors within the single-layered surface epithelium differentiate to form the epidermis and its appendages. Here, we show that microRNAs (miRNAs) have an essential role in orchestrating these events. We cloned more than 100 miRNAs from skin and show that epidermis and hair follicles differentially express discrete miRNA families. To explore the functional significance of this finding, we conditionally targeted Dicer1 gene ablation in embryonic skin progenitors. Within the first week after loss of miRNA expression, cell fate specification and differentiation were not markedly impaired, and in the interfollicular epidermis, apoptosis was not markedly increased. Notably, however, developing hair germs evaginate rather than invaginate, thereby perturbing the epidermal organization. Here we characterize miRNAs in skin, the existence of which was hitherto unappreciated, and demonstrate their differential expression and importance in the morphogenesis of epithelial tissues within this vital organ.  相似文献   

15.
Genomic alterations in cultured human embryonic stem cells   总被引:22,自引:0,他引:22  
Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10(-9) per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.  相似文献   

16.
In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.  相似文献   

17.
18.
Epigenetic status of human embryonic stem cells   总被引:15,自引:0,他引:15  
We examined the allele-specific expression of six imprinted genes and the methylation profiles of three imprinting control regions to assess the epigenetic status of human embryonic stem cells. We identified generally monoallelic gene expression and normal methylation patterns. During prolonged passage, one cell line became biallelic with respect to H19, but without loss of the gametic methylation imprint. These data argue for a substantial degree of epigenetic stability in human embryonic stem cells.  相似文献   

19.
Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号