首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 515 毫秒
1.
用琼脂糖(agarose)将血红蛋白(Hb)固定在热裂解石墨电极表面,制备了Hb-agaose膜修饰电极.包埋在琼脂糖中的血红蛋白与电极直接传递电子.在磷酸盐缓冲溶液中得到一对可逆的血红蛋白辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对氧化还原峰,式电势为-0.299 V(vs SCE),式电势随缓冲溶液pH值增加而负移且成线性关系,直线斜率为-44 mV/pH,说明血红蛋白的电子传递过程伴随有质子的转移.并研究了Hb-agarose膜修饰电极对H2O2的电催化性质.  相似文献   

2.
用海藻酸钠(Sodium Alginate,SA)将肌红蛋白(Mb)固定在热裂解石墨电极表面,制备了Mb.SA膜修饰电极.包埋在SA膜中的Mb在磷酸盐缓冲溶液(PBS)和乙醇混合溶液中与电极直接传递电子,得到一对对称的Mb辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对的氧化还原峰,式电势为-0.339V(vs SCE).式电势随PBSpH值增加而负移且成线性关系,直线斜率为-47.0mV/pH,说明肌红蛋白的电子传递过程伴随有质子的转移.并研究了Mb-SA膜修饰电极在PBS和乙醇混合溶液中催化还原H2O2和催化六氯乙烷脱氯,该修饰电极可用于H2O2和六氯乙烷的定量检测.  相似文献   

3.
用甲基纤维素(MC)将血红蛋白(Hb)固载于热裂解石墨电极表面,制备了Hb-MC膜修饰电极.包埋在MC中的Hb与电极直接传递电子,在pH7.0的磷酸盐缓冲溶液中得到1对可逆的血红蛋白辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对氧化还原峰,式电势为-0.312V(vs SCE),其式电势随溶液pH值增加而负移且成线性关系,直线斜率为-41.0mV/pH,说明Hb的电子传递过程伴随有质子的转移.研究了Hb-MC膜修饰电极对O2,H2O2和NO的电催化性质。  相似文献   

4.
高半胱氨酸SAM膜电极的制备及其电化学行为研究   总被引:4,自引:0,他引:4  
研究了高半胱氨酸在金电极上形成单分子自组装膜的条件,并利用循环伏安法,交流阻抗谱研究了[Fe(CN)6]^3-/4-在高半胱氨酸SAM膜电极上于不同pH值溶液中的电化学行为。循环伏安结果表明,在pH大于高半胱氨酸等电点的溶液中,[Fe(CN)6]^3-/4-在膜电极上的循环伏安曲线峰电流明显降低,峰分离差增大,说明随pH值的增加,[Fe(CN)6]^3-/4-离子对在SAM膜电极上的可逆性变差;交流阻抗图谱显示,由于SAM膜电极表面带负电荷时,[Fe(CN)6]^3-/4-难以靠近电极表面,使其与电极表面的电子交换反应变得困难,在SAM膜电极上的电化学反应电阻Rct明显增加,并且随电解质溶液的pH增加而增加。  相似文献   

5.
用甲基纤维素(MC)将肌红蛋白(Mb)固载于热裂解石墨电极表面,制备了Mb-MC膜修饰电极.修饰膜中的Mb与电极直接传递电子,在磷酸盐缓冲溶液(PBS)中循环伏安扫描可得到一对可逆的Mb辅基血红素Fe(Ⅲ)/Fe(Ⅱ)电对氧化还原峰,式电势为-0.298V(vs SCE).式电势随PBS的pH值增加而负移且成线性关系,说明Mb的电子传递过程伴随有质子的转移,最后探讨了该修饰电极对O2,H2O2和NO的电催化性质。  相似文献   

6.
纳米氧化铝模板促进细胞色素c的电催化   总被引:2,自引:0,他引:2  
在草酸溶液中, 通过阳极氧化铝箔制备纳米氧化铝(AAO)模板, 将细胞色素c(Cyt c)固定在纳米AAO模板和4,4-二硫二吡啶(PySSPy)修饰金电极表面, 制得Cytc/Au/AAO/PySSPy薄膜电极. 在pH 6.8的缓冲溶液中, 该电极在0.059 V (vs. Ag/AgCl) 处有一 对准可逆氧化还原峰, 为Cyt c血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰. 在AAO/PySSPy薄膜的微环境中, Cyt c与金电极之间的电子传递加快. 紫外光谱结果表明, Cyt c在AAO薄膜中依然保持其原始构象. 该Cyt c/Au/AAO/PySSPy薄膜电极还可用于过氧化氢的催化还 原.  相似文献   

7.
在pH=5.4的HAc-NaAc缓冲溶液中, 肌红蛋白-壳聚糖-金胶薄膜修饰电极在-0.20 V(vs. Ag/AgCl) 处有一对准可逆的氧化还原峰, 为Mb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰. 在壳聚糖 金胶纳米复合薄膜的微环境中, 肌红蛋白与玻碳电极之间的电子传递明显加快. 考察了扫速、 溶液pH值及支持电解质浓度等因素对肌红蛋白电子传递的影响. 紫 外光谱结果表明, 肌红蛋白在壳聚糖 金胶溶液中依然保持其原始构象, 该肌红蛋白-壳聚糖-金胶纳米复合薄膜修饰电极还可用于溶解氧的催化还原.  相似文献   

8.
用纳米火棉胶膜将细胞色素c固定在玻碳电极表面,制备了细胞色素c-火棉胶膜修饰电极.吸附在火棉胶膜上的细胞色素c可以与电极发生直接电子传递.在pH=7.0的0.1mol/LPBS缓冲溶液中可得到一对准可逆的细胞色素c的血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对氧化还原峰,实验求得细胞色素c异相电子传递速率常数k0为65.4μm/s.进一步考察了扫速、溶液pH值等因素对细胞色素c电子传递的影响,并用电化学阻抗法研究了修饰电极的电化学行为.  相似文献   

9.
研究了芦丁修饰电极的制备、电化学性质及其对NADH的电催化作用.修饰电极在0.1mol/L磷酸缓冲溶液中(pH 7.0)于0.0- 0.50 V电位范围内呈现一对氧化还原峰,其式量电位(E0′)为 0.305V.在pH 5.0-8.0范围内,其式量电位随pH值变化的斜率为-56.95 mV/pH.电极反应为2电子伴随着2个质子参与的过程,表观电极反应速率常数(ks)为18 s-1.该修饰电极对NADH具有很好的催化氧化作用.NADH浓度在0.1-5.0 m mol/L范围内其浓度与峰电流呈现良好的线性关系.  相似文献   

10.
研究对比了将过氧化氢酶(CAT)固定在多壁碳纳米管(MWCNT)-Nafion膜中,制备MWCNT-Nafion/CAT电极的方法,发现固定在Nafion膜中的MWCNT能在CAT和玻碳电极之间有效地传递电子,能实现MWCNT修饰电极上CAT的直接电子转移.CV测定表明:在磷酸盐缓冲溶液中可得到一对过氧化氢酶辅基血红素Fe(III)/Fe(II)氧化还原峰,其峰电流随扫描速度(0.050~0.210 V/s)呈良好的线性关系,其氧化峰电位(Epa)、还原峰电位(Epc)、式量电位(E0)′均随着溶液的pH值增加而负移,且呈线性关系,但其斜率不同,表明CAT的电子传递过程中质子化作用不是简单过程.用计时电流法考察MWCNT-Nafion/CAT电极对H2O2的响应速度和检测灵敏度,结果良好,且实验表明,该电极于4℃保存20天后,其伏安响应仍能保持80%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号