首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cyclic GMP increases photocurrent and light sensitivity of retinal cones   总被引:5,自引:0,他引:5  
W H Cobbs  A E Barkdoll  E N Pugh 《Nature》1985,317(6032):64-66
Like retinal rods, cone photoreceptors contain cyclic GMP and light-activated phosphodiesterase. The cGMP phosphodiesterase cascade is thought to mediate phototransduction in rods. Biochemical assays of nucleotide content in cone-dominant retinas, however, have failed to demonstrate light-induced changes in cGMP. Changes in cyclic AMP following light exposure have been reported, leading to the suggestion that in cone phototransduction cAMP assumes a role analogous to that played by cGMP in rods. Cyclic GMP introduced from tight-seal pipettes into isolated cones of the larval tiger salamander, Ambystoma tigrinum, rapidly increases light-modulated membrane current more than 10-fold. In cones, as in rods, cGMP also causes an approximately 10-fold increase in photocurrent duration and a 5- to 10-fold increase in light-sensitivity. Cyclic AMP has no effect on cone photocurrents under the same conditions. Because cGMP has similar effects on photocurrent magnitude and kinetics in both rods and cones, we conclude that cGMP plays corresponding roles in transduction in both vertebrate photoreceptor classes.  相似文献   

2.
Melanopsin has been proposed to be the photopigment of the intrinsically photosensitive retinal ganglion cells (ipRGCs); these photoreceptors of the mammalian eye drive circadian and pupillary adjustments through direct projections to the brain. Their action spectrum (lambda(max) approximately 480 nm) implicates an opsin and melanopsin is the only opsin known to exist in these cells. Melanopsin is required for ipRGC photosensitivity and for behavioural photoresponses that survive disrupted rod and cone function. Heterologously expressed melanopsin apparently binds retinaldehyde and mediates photic activation of G proteins. However, its amino-acid sequence differs from vertebrate photosensory opsins and some have suggested that melanopsin may be a photoisomerase, providing retinoid chromophore to an unidentified opsin. To determine whether melanopsin is a functional sensory photopigment, here we transiently expressed it in HEK293 cells that stably expressed TRPC3 channels. Light triggered a membrane depolarization in these cells and increased intracellular calcium. The light response resembled that of ipRGCs, with almost identical spectral sensitivity (lambda(max) approximately 479 nm). The phototransduction pathway included Gq or a related G protein, phospholipase C and TRPC3 channels. We conclude that mammalian melanopsin is a functional sensory photopigment, that it is the photopigment of ganglion-cell photoreceptors, and that these photoreceptors may use an invertebrate-like phototransduction cascade.  相似文献   

3.
Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on G(αq) activity, but not on the subsequent steps of the phototransduction cascade. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism.  相似文献   

4.
Matheny SA  Chen C  Kortum RL  Razidlo GL  Lewis RE  White MA 《Nature》2004,427(6971):256-260
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.  相似文献   

5.
Xiang Y  Yuan Q  Vogt N  Looger LL  Jan LY  Jan YN 《Nature》2010,468(7326):921-926
Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.  相似文献   

6.
7.
Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate   总被引:2,自引:0,他引:2  
A Fein  R Payne  D W Corson  M J Berridge  R F Irvine 《Nature》1984,311(5982):157-160
A central question concerning vision is the identity of the biochemical pathway that underlies phototransduction. The large size of the ventral photoreceptors of Limulus polyphemus renders them a favourite preparation for investigating this problem. The fact that a single photon opens approximately 1,000 ionic channels in these photoreceptors suggests the need for an internal transmitter. We have investigated whether inositol 1,4,5-trisphosphate (InsP3) functions as such an internal transmitter, given that InsP3 may act as an intracellular messenger in other cellular processes. Here we report that in Limulus, intracellular pressure injection of InsP3 both excites and adapts ventral photoreceptors in a manner similar to light.  相似文献   

8.
Cyclic GMP is involved in the excitation of invertebrate photoreceptors   总被引:13,自引:0,他引:13  
E C Johnson  P R Robinson  J E Lisman 《Nature》1986,324(6096):468-470
The hyperpolarizing receptor potential in vertebrate rod photoreceptors appears to be mediated by the second messenger, cyclic GMP. Injection of cGMP into rods or application of cGMP to inside-out membrane patches activates a conductance resembling that produced by light. Light produces a rapid reduction of cGMP in living rods, leading to closure of sodium channels and membrane hyperpolarization. In most invertebrate photoreceptors the response to light is depolarizing. We have investigated whether cGMP is involved in controlling the increase in sodium conductance that underlies this depolarization. We show here that injection of cGMP into Limulus photoreceptors produces a depolarization that mimics the receptor potential. We also show that the cGMP concentration of the squid retina increases rapidly during exposure to light. These results support the hypothesis that cGMP mediates the light-induced depolarization in invertebrate photoreceptors and suggests that vertebrate and invertebrate phototransduction may be more similar than previously thought.  相似文献   

9.
The Wnt family of secreted molecules functions in cell-fate determination and morphogenesis during development in both vertebrates and invertebrates (reviewed in ref. 1). Drosophila Wingless is a founding member of this family, and many components of its signal transduction cascade have been identified, including the Frizzled class of receptor. But the mechanism by which the Wingless signal is received and transduced across the membrane is not completely understood. Here we describe a gene that is necessary for all Wingless signalling events in Drosophila. We show that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled. arrow encodes a single-pass transmembrane protein, indicating that it may be part of a receptor complex with Frizzled class proteins. Arrow is a low-density lipoprotein (LDL)-receptor-related protein (LRP), strikingly homologous to murine and human LRP5 and LRP6. Thus, our data suggests a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.  相似文献   

10.
M J Berridge  R F Irvine 《Nature》1984,312(5992):315-321
There has recently been rapid progress in understanding receptors that generate intracellular signals from inositol lipids. One of these lipids, phosphatidylinositol 4,5-bisphosphate, is hydrolysed to diacylglycerol and inositol trisphosphate as part of a signal transduction mechanism for controlling a variety of cellular processes including secretion, metabolism, phototransduction and cell proliferation. Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.  相似文献   

11.
植物胞外CaM调节机理初探   总被引:4,自引:0,他引:4  
利用NAD激酶法和平衡透析法,作者研究了不同pH条件对Ca^2+,钙调素(CaM)的结合能力及CaM激活NAD激酶的影响。结果发现:H^+不仅能降低Ca^2+与CaM的结合能力而且还能显著抑制CaM对NAD激酶的激活。本实验证实了酸性条件下不利于CaM的活性状态的转变,即pH值低时激活CaM需要更多的Ca^2+。此研究结果为植物胞外CaM的活性状态的转变,即pH值低时激活CaM需要更多的Ca^2+  相似文献   

12.
B Dickson  F Sprenger  D Morrison  E Hafen 《Nature》1992,360(6404):600-603
Specification of the R7 cell fate in the developing Drosophila eye requires activation of the Sevenless (Sev) receptor tyrosine kinase, located on the surface of the R7 precursor cell, by its interaction with the Boss protein, expressed on the surface of the neighbouring R8 cell. Four genes that participate in the intracellular transmission of this signal have so far been identified and molecularly characterized: Ras1, Sos, Gap1 and sina (refs 4-8). The Drosophila homologue of the mammalian Raf-1 serine/threonine kinase, which has been implicated in signal transduction pathways activated by many receptor tyrosine kinases (reviewed in refs 9 and 10), is encoded by the raf locus (also known as l(1)polehole, Draf-1 or Draf). Here we show that the Drosophila Raf serine/threonine kinase also plays a crucial role in the R7 pathway: the response to Sev activity is dependent on raf function, and a constitutively activated Raf protein can induce R7 cell development in the absence of sev function. We also present genetic evidence suggesting that Raf acts downstream of Ras1 and upstream of Sina in this signal transduction cascade.  相似文献   

13.
S E Dryer  D Henderson 《Nature》1991,353(6346):756-758
Phototransduction in the vertebrate retina is dependent in part on a cyclic GMP-activated ionic channel in the plasma membrane of rods and cones. But other vertebrate cells are also photosensitive. Cells of the chick pineal gland have a photosensitive circadian rhythm in melatonin secretion that persists in dissociated cell culture. Exposure to light causes inhibition of melatonin secretion, and entrainment of the intrinsic circadian oscillator. Chick pinealocytes express several 'retinal' proteins, including arrestin, transducin and a protein similar to the visual pigment rhodopsin. Pinealocytes of lower vertebrates display hyperpolarizing responses to brief pulses of light. Thus it is possible that some of the mechanisms of phototransduction are similar in retinal and pineal photoreceptors. We report here the first recordings of cyclic GMP-activated channels in an extraretinal photoreceptor. Application of GMP, but not cyclic AMP, to excised inside-out patches caused activation of a 15-25 pS cationic channel. These channels may be essential for phototransduction in the chick pineal gland.  相似文献   

14.
15.
R S Dhallan  K W Yau  K A Schrader  R R Reed 《Nature》1990,347(6289):184-187
Odorant signal transduction occurs in the specialized cilia of the olfactory sensory neurons. Considerable biochemical evidence now indicates that this process could be mediated by a G protein-coupled cascade using cyclic AMP as an intracellular second messenger. A stimulatory G protein alpha subunit is expressed at high levels in olfactory neurons and is specifically enriched in the cilia, as is a novel form of adenylyl cyclase. This implies that the olfactory transduction cascade might involve unique molecular components. Electrophysiological studies have identified a cyclic nucleotide-activated ion channel in olfactory cilia. These observations provide evidence for a model in which odorants increase intracellular cAMP concentration, which in turn activates this channel and depolarizes the sensory neuron. An analogous cascade regulating a cGMP-gated channel mediates visual transduction in photoreceptor cells. The formal similarities between olfactory and visual transduction suggest that the two systems might use homologous channels. Here we report the molecular cloning, functional expression and characterization of a channel that is likely to mediate olfactory transduction.  相似文献   

16.
17.
The Drosophila melanogaster gene Anaplastic lymphoma kinase (Alk) is homologous to mammalian Alk, a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs). We have previously shown that the Drosophila Alk RTK is crucial for visceral mesoderm development during early embryogenesis. Notably, observed Alk visceral mesoderm defects are highly reminiscent of the phenotype reported for the secreted molecule Jelly belly (Jeb). Here we show that Drosophila Alk is the receptor for Jeb in the developing visceral mesoderm, and that Jeb binding stimulates an Alk-driven, extracellular signal-regulated kinase-mediated signalling pathway, which results in the expression of the downstream gene duf (also known as kirre)--needed for muscle fusion. This new signal transduction pathway drives specification of the muscle founder cells, and the regulation of Duf expression by the Drosophila Alk RTK explains the visceral-mesoderm-specific muscle fusion defects observed in both Alk and jeb mutant animals.  相似文献   

18.
Mutations of the Drosophila melanogaster ninaA gene affect phototransduction: ninaA mutant flies have a 10-fold reduction in the levels of rhodopsin in the R1-R6 photoreceptor cells. The ninaA gene was isolated and found to encode a 237-amino-acid protein that has over 40% amino-acid sequence identity with the vertebrate cyclosporin A-binding protein, cyclophilin, a protein that seems to be involved in T-lymphocyte activation. The remarkable evolutionary conservation of cyclophilin in two phylogenetically distant organisms and its involvement in diverse transduction processes suggests that this protein plays an important role in cellular metabolism. Indeed, cyclophilin has recently been shown to be a prolyl cis-trans isomerase that catalyses, in vitro, rate-limiting steps in the folding of a number of proteins. Here, we present evidence for the involvement of cyclophilin-like molecules in a defined cellular process. The availability of mutations in a cyclophilin gene provides a new model system for the study of cyclophilin and cyclosporin action.  相似文献   

19.
Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs). These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Rod-cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod-cone networks. To determine how the ipRGCs relay rod-cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.  相似文献   

20.
Ma Y  Creanga A  Lum L  Beachy PA 《Nature》2006,443(7109):359-363
RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号