首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of simian immunodeficiency virus isolates   总被引:20,自引:0,他引:20  
Information on the extent of genetic variability among non-human primate lentiviruses related to human immunodeficiency virus (HIV) is sorely lacking. Here we describe the isolation of two molecular clones from the simian immunodeficiency virus (SIV) and their use to derive restriction endonuclease maps of five SIV isolates from rhesus macaques and one from a cynomolgus macaque. Although similar, all six viral isolates are readily distinguishable; the single isolate from a cynomolgus macaque is the most different. The restriction endonuclease map of one macaque isolate (SIVMAC-251) is identical to that published by others for STLV-IIIAGM of African green monkeys and for HTLV-IV of humans. Nucleotide sequences from the envelope region of cloned SIVMAC-251 have more than 99% identify to previously published sequences for STLV-IIIAGM (refs 2, 4) and HTLV-IV (ref. 4). These results and other observations provide strong evidence that isolates previously referred to as STLV-IIIAGM and HTLV-IV by others are not authentic, but were derived from cell cultures infected with SIVMAC-251.  相似文献   

2.
Biologically diverse molecular variants within a single HIV-1 isolate   总被引:55,自引:0,他引:55  
AIDS is a disorder characterized by a slow progressive impairment of immune function and by infection of human immunodeficiency viruses (HIV-1, HIV-2). Our knowledge of how these viruses cause disease in man, or how the related lentiviruses (visna and equine infectious anaemia virus) cause disease in animals, is still fragmentary. In particular, the significance of genetic variation in HIV-1, occurring within populations, within individuals and over periods of time, and the mechanisms of viral persistence remain unclear. To address these issues we prepared a series of proviral clones of HIV-1 originating from a single patient and compared their biological properties. Here we show that hybrid genomes (in which the envelope region of six viral clones were separately substituted into a prototype HIV-1 genome) generated viruses with widely differing capacity to grow in human T cells, cell lines and monocytoid cultures. These data suggest that extensive biological variation exists in vivo within an infected individual and is in part determined at the level of the viral envelope.  相似文献   

3.
Although much is now known of the strain variation among the type-1 human immunodeficiency virus (HIV-1), which is the cause of AIDS (acquired immune deficiency syndrome) in the United States, Europe, and Central Africa, much less is yet known about a second group of viruses that have been found in West Africans. One member of this group, named human T-cell lymphotropic virus type 4 (HTLV-4), has been isolated from healthy Senegalese. Another is the virus isolated from West Africans with AIDS-like illness and originally called LAV-2 but now renamed HIV-2. Both these viruses seem to be less closely related to HIV-1 than they are to a virus of healthy African green monkeys, known variously as simian T-cell lymphotropic virus type 3 (STLV-3) or simian immunodeficiency virus (SIV), which in turn is related to viruses isolated from healthy sooty mangabeys and captive macaques with a form of immunodeficiency (to distinguish these viruses they are referred to as STLV-3 (or SIV)agm, STLV-3mac, or STLV-3smm). To clarify the relationship between the various HIVs, STLV-3s and HTLV-4 we are determining and comparing the molecular and biological characteristics of several of them. Following our recent publication of a restriction-site map of STLV-3agm, we now report that the equivalent map of three isolates of HTLV-4 is remarkably similar to it. In addition we present comparative sequence data on the long terminal repeats (LTR) of HTLV-4, STLV-3agm, HIV-1 and HIV-2, together with evidence that cloned HTLV-4 uses the same receptor as HIV-1 and induces some, but not all, of the cytopathic effects attributed to most isolates of HIV-1 and HIV-2.  相似文献   

4.
T Shioda  J A Levy  C Cheng-Mayer 《Nature》1991,349(6305):167-169
Strains of human immunodeficiency virus type 1 (HIV-1) display a high degree of biological heterogeneity which may be linked to certain clinical manifestation of AIDS. They vary in their ability to infect different cell types, to replicate rapidly and to high titre in culture, to down-modulate the CD4 receptor, and to cause cytopathic changes in infected cells. Some of these in vitro properties correlate with pathogenicity of the virus in vivo. To map the viral determinants of the cellular host range of HIV-1, recombinant viruses were generated between biologically active molecular clones of HIV-1 isolates showing differences in infection of primary peripheral blood macrophages and established T-cell lines. We report here that a specific region of the envelope gp120 gene representing 159 amino-acid residues of glycoprotein gp120 seems to determine macrophage tropism, whereas an overlapping region representing 321 amino-acid residues determines T cell-line tropism. These studies provide a basis for relating functional domains of the HIV-1 env gene to pathogenic potential.  相似文献   

5.
6.
Identification of a protein encoded by the vpu gene of HIV-1   总被引:31,自引:0,他引:31  
Human immunodeficiency virus 1 (HIV-1) is the aetiological agent of AIDS. The virus establishes lytic, latent and non-cytopathic productive infection in cells in culture. The complexity of virus-host cell interaction is reflected in the complex organization of the viral genome. In addition to the genes that encode the virion capsid and envelope proteins and the enzymes required for proviral synthesis and integration common to all retroviruses, HIV-1 is known to encode at least four additional proteins that regulate virus replication, the tat, art, sor and 3' orf proteins, as well as a protein of unknown function from the open reading frame called R. Close examination of the nucleic acid sequences of the genomes of multiple HIV isolates raised the possibility that the virus encodes a previously undetected additional protein. Here we report that HIV-1 encodes a ninth protein and that antibodies to this protein are detected in the sera of people infected with HIV-1. This protein distinguishes HIV-1 isolates from the other human and simian immunodeficiency viruses (HIV-2 and SIV) that do not have the capacity to encode a similar protein.  相似文献   

7.
Human infection by genetically diverse SIVSM-related HIV-2 in west Africa.   总被引:41,自引:0,他引:41  
Our understanding of the biology and origins of human immunodeficiency virus type 2 (HIV-2) derives from studies of cultured isolates from urban populations experiencing epidemic infection and disease. To test the hypothesis that such isolates might represent only a subset of a larger, genetically more diverse group of viruses, we used nested polymerase chain reactions to characterize HIV-2 sequences in uncultured mononuclear blood cells of two healthy Liberian agricultural workers, from whom virus isolation was repeatedly unsuccessful, and from a culture-positive symptomatic urban dweller. Analysis of pol, env and long terminal repeat regions revealed the presence of three highly divergent HIV-2 strains, one of which (from one of the healthy subjects) was significantly more closely related to simian immunodeficiency viruses infecting sooty mangabeys and rhesus macaques (SIVSM/SIVMAC) than to any virus of human derivation. This subject also harboured multiply defective viral genotypes that resulted from hypermutation of G to A bases. Our results indicate that HIV-2, SIVSM and SIVMAC comprise a single, highly diverse group of lentiviruses which cannot be separated into distinct phylogenetic lineages according to species of origin.  相似文献   

8.
9.
Molecular cloning and polymorphism of the human immune deficiency virus type 2   总被引:40,自引:0,他引:40  
F Clavel  M Guyader  D Guétard  M Sallé  L Montagnier  M Alizon 《Nature》1986,324(6098):691-695
We recently reported the isolation of a novel retrovirus, the human immune deficiency virus type 2 (HIV-2, previously named LAV-2), from patients with acquired immune deficiency syndrome (AIDS) originating from West Africa. This virus is related to HIV-1, the causative agent of the AIDS epidemic now spreading in Central and East Africa, as well as the USA and Europe (see ref. 3 for review) both by its morphology and by its tropism and in vitro cytopathic effect on CD4 (T4) positive cell lines and lymphocytes. But preliminary hybridization experiments indicated that there are substantiated differences between the sequences of the two genomes. Furthermore, the proteins of HIV-1 and HIV-2 have different sizes and their serological cross-reactivity is restricted to the major core protein, as the envelope glycoproteins of HIV-2 are not immunoprecipitated by HIV-1-positive sera. We now report the molecular cloning of the complete 9.5-kilobase (kb) genome of HIV-2, the observation of restriction site polymorphism between different isolates, and a preliminary analysis of the relationship of HIV-2 with other human and simian retroviruses.  相似文献   

10.
Variable and conserved neutralization antigens of human immunodeficiency virus   总被引:65,自引:0,他引:65  
Human immunodeficiency virus type 1 (HIV-1, HTLV-III/LAV), the retrovirus responsible for acquired immune deficiency syndrome (AIDS), shows a high degree of genetic polymorphism, particularly in the env gene. We have examined sera from rabbits and guinea pigs immunized with gp130, a recombinant env glycoprotein, and sera from HIV-1-infected subjects, to test their capacity to neutralize a panel of genetically divergent HIV-1 isolates. The sera raised against recombinant antigen specifically neutralized the virus strain from which the env gene was cloned (HTLV-IIIB), but not an independent isolate (HTLV-IIIRF). One rabbit serum tested on seven isolates cross-neutralized two at lower titres. In contrast, human sera from Britain and Uganda, chosen for ability to neutralize HTLV-IIIRF, cross-neutralized six other HIV-1 isolates. When serum and isolate were derived from the same subject, the serum was in some cases effective at slightly lower concentrations (higher titres). Human complement did not affect neutralization titres. These findings indicate that genetically diverse HIV-1 isolates carry both variable and widely conserved antigenic epitopes for neutralizing antibodies. The identification of shared epitopes may help the development of protective vaccines.  相似文献   

11.
J Laurence  A S Hodtsev  D N Posnett 《Nature》1992,358(6383):255-259
In the pathogenesis of AIDS it is not yet understood whether the small fraction of CD4+ T cells (approximately 1%) infected with the human immunodeficiency virus (HIV) are randomly targeted or not. Here we present evidence that human CD4 T-cell lines expressing selected T-cell antigen receptor V beta gene products can all be infected in vitro with HIV-1, but give markedly different titres of HIV-1 virion production. For example, V beta 12 T-cell lines from several unrelated donors reproducibly yielded up to 100-fold more gag gene product (p24gag antigen) than V beta 6.7a lines. This is consistent with a superantigen effect, because the V beta selectivity was observed with several divergent HIV-1 isolates, was dependent on antigen-presenting cells and on major histocompatibility complex (MHC) class II but was not MHC class II-restricted. The in vivo significance of these findings is supported by the preferential stimulation of V beta 12+ T cells by freshly obtained irradiated antigen-presenting cells from some HIV-1-seropositive but not HIV-1-negative donors. Moreover, cells from patients positive for viral antigen (gp120) were enriched in the V beta 12 subpopulation. V beta 12+ T cells were not deleted in AIDS patients, however, raising the possibility that a variety of mechanisms contribute to T-cell depletion. Our results indicate that a superantigen targets a subpopulation of CD4+ cells for viral replication.  相似文献   

12.
The characterization of HIV-1 (HTLV-III/LAV), the human retrovirus associated with AIDS (acquired immune deficiency syndrome) has led to the identification of a group of related human and simian retroviruses which also infect CD4-bearing T lymphocytes. Simian T-lymphotropic virus type III (simian immodeficiency virus) from macaques (STLV-IIIMAC) induces symptoms similar to those of AIDS in infected macaques, but isolates from African green monkeys (STLV-IIIAGM) and mangabeys (STLV-IIMM) appear to be non-pathogenic in these animals. A human virus immunologically related to STLV-IIIAGM (HTLV-IV), reported to have been isolated from healthy humans, has been shown to be almost identical to STLV-IIIAGM, which has called into question the independent origin of these viruses. Here we report the complete DNA sequence of STLV-IIIAGM and analyse its relationship with the genomes of the HTLV-IIIB strain of HIV-1, HIV-2ROD (previously called LAV-2) and several ungulate lentiretroviruses. STLV-IIIAGM and HIV-2 are closely related, and more distantly related to HIV-1.  相似文献   

13.
The phylogenetic history of immunodeficiency viruses   总被引:19,自引:0,他引:19  
T F Smith  A Srinivasan  G Schochetman  M Marcus  G Myers 《Nature》1988,333(6173):573-575
Knowledge of the phylogenetic history of the human immunodeficiency viruses (HIV-1 and HIV-2) is important for our understanding of the epidemiology of AIDS, the disease caused by these viruses. Reconstruction of the evolutionary tree is hampered, however, by two problems. One is the high variation in nucleotide sequence between the known HIV isolates which can create formidable difficulties in identifying homologous genomic sites that may be used in a molecular phylogenetic reconstruction. Another impediment has been the lack of unequivocal time calibration points: there is only a sparse 'fossil record' for HIV and limited historical epidemiological data. We have largely overcome these difficulties by: (1) a thorough optimal-sequence alignment analysis; (2) the inclusion of sequences of an early (1976) HIV-1 isolate, a recent (1986) HIV-2 isolate and two simian immunodeficiency viruses (SIV) along with five other HIV-1 isolates; and (3) the reconstruction of a minimum-length evolutionary tree based on the envelope-gene variable positions. We conclude that HIV-1 may have evolved from its common ancestor with HIV-2 as recently as 40 years ago.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) sequences that pre-date the recognition of AIDS are critical to defining the time of origin and the timescale of virus evolution. A viral sequence from 1959 (ZR59) is the oldest known HIV-1 infection. Other historically documented sequences, important calibration points to convert evolutionary distance into time, are lacking, however; ZR59 is the only one sampled before 1976. Here we report the amplification and characterization of viral sequences from a Bouin's-fixed paraffin-embedded lymph node biopsy specimen obtained in 1960 from an adult female in Léopoldville, Belgian Congo (now Kinshasa, Democratic Republic of the Congo (DRC)), and we use them to conduct the first comparative evolutionary genetic study of early pre-AIDS epidemic HIV-1 group M viruses. Phylogenetic analyses position this viral sequence (DRC60) closest to the ancestral node of subtype A (excluding A2). Relaxed molecular clock analyses incorporating DRC60 and ZR59 date the most recent common ancestor of the M group to near the beginning of the twentieth century. The sizeable genetic distance between DRC60 and ZR59 directly demonstrates that diversification of HIV-1 in west-central Africa occurred long before the recognized AIDS pandemic. The recovery of viral gene sequences from decades-old paraffin-embedded tissues opens the door to a detailed palaeovirological investigation of the evolutionary history of HIV-1 that is not accessible by other methods.  相似文献   

15.
The 9,213-nucleotide structure of the AIDS/lymphadenopathy virus has been determined from molecular clones representing the integrated provirus and viral RNA. The sequence reveals that the virus is highly polymorphic and lacks significant nucleotide homology with type C retroviruses characterized previously. Together with an analysis of the two major viral subgenomic RNAs, these studies establish the coding frames for the gag, pol and env genes and predict the expression of a novel gene at the 3' end of the genome unrelated to the X genes of HTLV-1 and -II.  相似文献   

16.
Characterization of ribosomal frameshifting in HIV-1 gag-pol expression   总被引:119,自引:0,他引:119  
T Jacks  M D Power  F R Masiarz  P A Luciw  P J Barr  H E Varmus 《Nature》1988,331(6153):280-283
  相似文献   

17.
18.
B H Hahn  L I Kong  S W Lee  P Kumar  M E Taylor  S K Arya  G M Shaw 《Nature》1987,330(6144):184-186
Human immunodeficiency virus type 1 (HIV-1) is the aetiologic agent of AIDS (acquired immune deficiency syndrome) in most countries and probably originated in Central Africa like the AIDS epidemic itself. Evidence for a second major group of human immunodeficiency-associated retroviruses came from a report that West African human populations like wild-caught African green monkeys had serum antibodies that reacted more strongly with a simian immunodeficiency virus (STLV-3Mac) (ref.6) than with HIV-1. Novel T-lymphotropic retroviruses were reported to have been isolated from healthy Senegalese West Africans (HTLV-4) (ref. 4) and from African green monkeys (STLV-3AGM) (ref. 7), and a different retrovirus (HIV-2) was identified in other West African AIDS patients. Genomic analysis of HIV-2 clearly distinguished it from STLV-3 (ref. 9), but restriction enzyme site-mapping of three different HTLV-4 isolates and six different STLV-3AGM isolates showed them to be essentially indistinguishable. In this report we clone, restriction map, and partially sequence three isolates of HTLV-4 (PK82, PK289, PK190) (ref. 4). We find that these viruses differ in nucleotide sequence from each other and from three isolates of STLV-3AGM (K78, K6W, K1) (ref. 7) by 1% or less. We also report the isolation of a T-lymphotropic retrovirus from the peripheral blood of a healthy Senegalese woman which hybridizes preferentially to HIV-2 specific DNA probes. We conclude that HTLV-4 (ref. 4) and STLV-3AGM (ref. 7) are not independent virus isolates and that HIV-2 is present in Senegal as it is in other West African countries.  相似文献   

19.
Image reconstructions of helical assemblies of the HIV-1 CA protein   总被引:34,自引:0,他引:34  
Li S  Hill CP  Sundquist WI  Finch JT 《Nature》2000,407(6802):409-413
The type 1 human immunodeficiency virus (HIV-1) contains a conical capsid comprising approximately 1,500 CA protein subunits, which organizes the viral RNA genome for uncoating and replication in a new host cell. In vitro, CA spontaneously assembles into helical tubes and cones that resemble authentic viral capsids. Here we describe electron cryo-microscopy and image reconstructions of CA tubes from six different helical families. In spite of their polymorphism, all tubes are composed of hexameric rings of CA arranged with approximate local p6 lattice symmetry. Crystal structures of the two CA domains were 'docked' into the reconstructed density, which showed that the amino-terminal domains form the hexameric rings and the carboxy-terminal dimerization domains connect each ring to six neighbours. We propose a molecular model for the HIV-1 capsid that follows the principles of a fullerene cone, in which the body of the cone is composed of curved hexagonal arrays of CA rings and the ends are closed by inclusion of 12 pentagonal 'defects'.  相似文献   

20.
M H Malim  J Hauber  R Fenrick  B R Cullen 《Nature》1988,335(6186):181-183
The pathogenic human retrovirus human immunodeficiency virus type 1 (HIV-1) encodes two trans-acting nuclear proteins, tat and rev, whose functional expression is essential for viral replication in vitro. The tat protein greatly enhances the expression of both structural and regulatory genes of HIV-1 (linked to the viral long-terminal-repeat promoter element), whereas the rev gene product (previously termed art or trs) has only been shown to be required for the synthesis of structural proteins. Here, we demonstrate that rev also moderates the expression of regulatory genes of HIV-1. It decreases the expression of messenger RNAs that encode the full-length form of the viral tat gene product or the rev protein itself, and induces the synthesis of a previously unreported, truncated tat protein. These actions of rev are mediated by a dramatic shift in the ratio of spliced to unspliced cytoplasmic HIV-1 mRNA. Therefore rev not only activates the synthesis of the viral structural proteins, but also modulates the level and quality of HIV-1 regulatory gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号