共查询到20条相似文献,搜索用时 62 毫秒
1.
基于分群粒子群优化的传感器调度方法 总被引:1,自引:0,他引:1
对面向目标跟踪任务的多传感器多任务调度问题进行研究。考虑到探测目标的运动特性,采用扩展卡尔曼滤波法实施目标跟踪,以成功调度任务的综合优先权、目标跟踪精度以及传感器网络的能源消耗为指标,建立了多传感器多任务调度的混合整数规划模型。提出一种基于分群机制的分群粒子群算法对模型进行求解,该方法通过粒子分群,提高对问题域的全局搜索能力,避免算法过快收敛和发生早熟。实验结果表明,该方法用于传感器调度问题,具有较好的求解性能。 相似文献
2.
针对STSS系统中段弹道目标传感器管理问题,通过分析中段目标跟踪的影响因素,提出了一种新的优化目标函数.并在分析基于二进制粒子群优化的传感器管理算法缺点的基础上,通过对粒子的降维处理和位置矢量更新式的改进,提出了一种基于实值粒子群优化的传感器管理算法.最后,根据中段弹道目标跟踪典型场景下的仿真实验分析,给出了目标函数加权系数的优选方案,并比较了几种方法的性能.仿真实验表明,所提优化目标函数能有效进行多传感器的管理调度,且基于实值粒子群优化的传感器管理算法是一种更加高效的方法. 相似文献
3.
基于免疫系统的无线传感器网络性能优化 总被引:1,自引:0,他引:1
根据免疫系统B细胞和T细胞模型,建立人工免疫系统与无线传感器网络间的相似关系,提出一种邻域节点选择算法,以判断传感器节点是否被激活。由于事件信息传递到汇聚节点会产生偏差,利用时空相关理论和自适应最小均方误差滤波算法,建立偏差与激活节点数目及偏差与节点通信频率之间的关系,确定传递事件信息所需最少激活节点数和最佳通信频率。不同条件下仿真结果表明,这种无线传感器网络优化策略能起到减少节点数目、降低通信频率及节约能耗的效果。 相似文献
4.
基于自适应网格的多目标粒子群优化算法 总被引:4,自引:1,他引:4
针对现有多目标进化算法计算复杂度高,搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术.仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能. 相似文献
5.
6.
集中式无线传感器网络TDMA优化调度方案 总被引:1,自引:0,他引:1
针对无线传感器网络周期性全局快速数据收集应用场合,提出了一种新的基于粒子群优化和禁忌搜索的混合算法,以对这类网络进行多指标TDMA优化调度。该算法采用基于熵权的逼近理想解的排序法对算法结果进行客观评价和择优。当网络数据收集任务量一定时,应用该算法,只需要较少的时隙数和能耗便可完成任务。仿真结果证实,算法搜索效率高,能改善网络TDMA调度效果,且比已经提出的一些TDMA调度算法性能优越。 相似文献
7.
针对现有直觉模糊核c-均值(intuitionistic fuzzy kernel c-means,IFKCM)聚类算法对初始值敏感、易陷入局部最优解及收敛速度慢等缺陷,汲取了粒子群优化(particle swarm optimization,PSO)算法优势,对初始聚类中心进行优化,提出了基于粒子群优化的直觉核c-均值(particle swarm-based intuitionistic fuzzy kernel c-means,PS-IFKCM)聚类算法,选取4组标准数据集实际样本数据对算法的有效性进行了试验。最后选取弹道中段目标识别常用的雷达截面积(radar cross section, RCS)这一特征属性进行弹道中段目标识别仿真实验,并将其与模糊c-均值(fuzzy c-means, FCM)算法、IFKCM算法的识别效果及运行时间进行比较分析,表明了该算法应用于弹道中段目标识别的有效性及优越性。 相似文献
8.
武器-目标分配问题的粒子群优化算法 总被引:18,自引:4,他引:18
建立了武器-目标分配问题的优化模型,分析了各种解决此模型的方法的优缺点。经典的粒子群是一个有效的寻找连续函数极值的方法,结合遗传算法的思想提出粒子群算法来解决武器-目标分配问题。经过比较测试,4种粒子群算法的效果都比较好,特别交叉策略A和变异策略B的混合粒子群算法是最好的且简单有效的算法。 相似文献
9.
10.
提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样挫;通过循环拥挤距离采控制归档集中非劣解的分布.提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘睹法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度... 相似文献
11.
提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。 相似文献
12.
求解约束优化的模拟退火PSO算法 总被引:4,自引:0,他引:4
针对有约束最优化问题,提出了基于模拟退火的粒子群优化(particle swarm optimization simulated annealing, PSO SA)算法。该算法利用模拟退火算法以一定概率接受较差点的概率突跳特性,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性原则进行约束处理,并在模拟退火算法产生新粒子的过程中保留最优不可行解的信息,弥补了可行性原则处理最优点位于约束边界附近时存在的不足。4个典型工程优化设计的实验结果表明,该算法能够寻得更优的约束最优化解. 相似文献
13.
An improved particle swarm optimization (PSO) algorithm is proposed to train the fuzzy support vector machine (FSVM) for pattern multi-classification. In the improved algorithm, the particles studies not only from itself and the best one but also from the mean value of some other particles. In addition, adaptive mutation was introduced to reduce the rate of premature convergence. The experimental results on the synthetic aperture radar (SAR) target recognition of moving and stationary target acquisition and recognition (MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 相似文献
14.
粒子群优化(particle swarm optimization, PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic metaphor, PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方面较经典算法有很大程度的改善。 相似文献
15.
基于粒子群优化模糊神经网络的高技术知识创新评价 总被引:1,自引:0,他引:1
针对高技术知识创新非线性、不确定性、时变性的特点,建立了评价指标体系|结合粒子群优化算法,提出了一种改进的模糊神经网络评价模型。该模型能够进行多个并行时变模糊神经网络组合算法,这些算法通过进化预置网络的连接权值、阈值和补偿参数,实现网络的学习和精确推理。通过仿真应用,证明了此种模型结构与算法适用性好,便于计算机实现,且全局收敛能力、收敛速度和泛化精度等性能均优于原先的学习算法。 相似文献
16.
针对广义旁瓣相消(generalized sidelobe canceller, GSC)算法运算量大, 在波束形成中存在旁瓣较高、稳健性差的问题, 提出一种基于粒子群优化(particle swarm optimization, PSO)的波束空间GSC算法。首先, 建立一种优化自适应转换矩阵将信号处理过程由阵元空间转换到波束空间, 通过减小自由度来降低算法的运算量。其次, 构建最小均方误差适应度函数, 在波束空间中利用压缩因子PSO算法充分利用接收数据的相关性, 缩减与期望信号误差并降低波束旁瓣。所提算法在降低算法运算量的同时, 解决了波束旁瓣过高的问题, 并在低快拍、强干扰条件下具有较好波束形成能力, 算法稳健性好。 相似文献
17.
18.
为解决粒子群优化(particle swarm optimization, PSO)算法易早熟、后期收敛慢、收敛精度低等问题, 提出一种自适应杂交退火PSO算法。采用Sigmoid函数控制惯性权重, 平衡粒子的全局搜索和局部搜索能力; 采用双曲正切函数控制加速系数, 平衡粒子的自我认知和社会认知能力, 提高算法精度; 引入模拟退火算子, 使粒子在搜索过程中以一定概率接受差解, 增加粒子跳出局部最优的能力; 在算法后期引入杂交变异算子, 增加种群多样性, 进一步提高算法精度。基于3种标准测试函数对所提算法的性能进行了验证, 并与现有典型PSO算法进行了对比。结果表明, 所提算法在收敛精度及收敛速度上均具有一定提升。最后, 将所提算法应用于阵列天线方向图综合设计, 取得了较现有算法更优的结果。 相似文献
19.
多邻域改进粒子群算法 总被引:4,自引:1,他引:4
为了改进标准粒子群算法的性能,提出了多邻域改进粒子群算法。算法提出了一种较为简单的多邻域拓扑方案,对速度惯性权重的更新策略进行了改进,引入了速度和搜索区间限制算法。经过对经典测试函数的计算测试,算法表现出良好的复杂问题求解能力。最后,针对多目标优化问题,给出了多目标应用在粒子群算法中的处理方法,并对经典的5维优化和Golinski 减速器设计问题进行了求解,通过数据比对,证明了算法性能远优于现有的一些算法。 相似文献
20.
对于无人机的路径规划问题,从和机器人路径规划问题的差别入手,通过粒子群优化算法对有限数目的采样航点的优化,使用高次B样条曲线拟合出满足路径最短且威胁最小的无人战斗机的飞行路径。研究了路径规划约束的数学模型、粒子构造方式和粒子的评价适应度函数。通过仿真对目前出现的基于粒子群优化算法的无人机路径的多项式拟合方法和所提出的基于B样条拟合的方法进行了比较。仿真结果表明,使用粒子群算法优化出来的B样条曲线比多项式拟合法和几何方法更加合理有效。 相似文献