共查询到19条相似文献,搜索用时 46 毫秒
1.
基于分群粒子群优化的传感器调度方法 总被引:1,自引:0,他引:1
对面向目标跟踪任务的多传感器多任务调度问题进行研究。考虑到探测目标的运动特性,采用扩展卡尔曼滤波法实施目标跟踪,以成功调度任务的综合优先权、目标跟踪精度以及传感器网络的能源消耗为指标,建立了多传感器多任务调度的混合整数规划模型。提出一种基于分群机制的分群粒子群算法对模型进行求解,该方法通过粒子分群,提高对问题域的全局搜索能力,避免算法过快收敛和发生早熟。实验结果表明,该方法用于传感器调度问题,具有较好的求解性能。 相似文献
2.
针对STSS系统中段弹道目标传感器管理问题,通过分析中段目标跟踪的影响因素,提出了一种新的优化目标函数.并在分析基于二进制粒子群优化的传感器管理算法缺点的基础上,通过对粒子的降维处理和位置矢量更新式的改进,提出了一种基于实值粒子群优化的传感器管理算法.最后,根据中段弹道目标跟踪典型场景下的仿真实验分析,给出了目标函数加权系数的优选方案,并比较了几种方法的性能.仿真实验表明,所提优化目标函数能有效进行多传感器的管理调度,且基于实值粒子群优化的传感器管理算法是一种更加高效的方法. 相似文献
3.
基于免疫系统的无线传感器网络性能优化 总被引:1,自引:0,他引:1
根据免疫系统B细胞和T细胞模型,建立人工免疫系统与无线传感器网络间的相似关系,提出一种邻域节点选择算法,以判断传感器节点是否被激活。由于事件信息传递到汇聚节点会产生偏差,利用时空相关理论和自适应最小均方误差滤波算法,建立偏差与激活节点数目及偏差与节点通信频率之间的关系,确定传递事件信息所需最少激活节点数和最佳通信频率。不同条件下仿真结果表明,这种无线传感器网络优化策略能起到减少节点数目、降低通信频率及节约能耗的效果。 相似文献
4.
基于自适应网格的多目标粒子群优化算法 总被引:4,自引:1,他引:4
针对现有多目标进化算法计算复杂度高,搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术.仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能. 相似文献
5.
针对无线传感器网络周期性全局快速数据收集应用场合,提出了一种新的基于粒子群优化和禁忌搜索的混合算法,以对这类网络进行多指标TDMA优化调度。该算法采用基于熵权的逼近理想解的排序法对算法结果进行客观评价和择优。当网络数据收集任务量一定时,应用该算法,只需要较少的时隙数和能耗便可完成任务。仿真结果证实,算法搜索效率高,能改善网络TDMA调度效果,且比已经提出的一些TDMA调度算法性能优越。 相似文献
6.
7.
8.
武器-目标分配问题的粒子群优化算法 总被引:18,自引:4,他引:18
建立了武器-目标分配问题的优化模型,分析了各种解决此模型的方法的优缺点。经典的粒子群是一个有效的寻找连续函数极值的方法,结合遗传算法的思想提出粒子群算法来解决武器-目标分配问题。经过比较测试,4种粒子群算法的效果都比较好,特别交叉策略A和变异策略B的混合粒子群算法是最好的且简单有效的算法。 相似文献
9.
针对现有直觉模糊核c-均值(intuitionistic fuzzy kernel c-means,IFKCM)聚类算法对初始值敏感、易陷入局部最优解及收敛速度慢等缺陷,汲取了粒子群优化(particle swarm optimization,PSO)算法优势,对初始聚类中心进行优化,提出了基于粒子群优化的直觉核c-均值(particle swarm-based intuitionistic fuzzy kernel c-means,PS-IFKCM)聚类算法,选取4组标准数据集实际样本数据对算法的有效性进行了试验。最后选取弹道中段目标识别常用的雷达截面积(radar cross section, RCS)这一特征属性进行弹道中段目标识别仿真实验,并将其与模糊c-均值(fuzzy c-means, FCM)算法、IFKCM算法的识别效果及运行时间进行比较分析,表明了该算法应用于弹道中段目标识别的有效性及优越性。 相似文献
10.
提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样挫;通过循环拥挤距离采控制归档集中非劣解的分布.提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘睹法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度... 相似文献
11.
求解约束优化的模拟退火PSO算法 总被引:4,自引:0,他引:4
针对有约束最优化问题,提出了基于模拟退火的粒子群优化(particle swarm optimization simulated annealing, PSO SA)算法。该算法利用模拟退火算法以一定概率接受较差点的概率突跳特性,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性原则进行约束处理,并在模拟退火算法产生新粒子的过程中保留最优不可行解的信息,弥补了可行性原则处理最优点位于约束边界附近时存在的不足。4个典型工程优化设计的实验结果表明,该算法能够寻得更优的约束最优化解. 相似文献
12.
An improved particle swarm optimization (PSO) algorithm is proposed to train the fuzzy support vector machine (FSVM) for pattern multi-classification. In the improved algorithm, the particles studies not only from itself and the best one but also from the mean value of some other particles. In addition, adaptive mutation was introduced to reduce the rate of premature convergence. The experimental results on the synthetic aperture radar (SAR) target recognition of moving and stationary target acquisition and recognition (MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 相似文献
13.
针对模糊C-均值(FCM)算法必须预先给定聚类数c和容易陷入局部极小的缺点,提出了融合遗传算法和粒子群算法的GA-PSO-FCM算法.遗传算法(GA)嵌套在FCM算法的外层,用于自动寻找最优聚类数,并把有效性准则函数作为其适应度函数;粒子群(PSO)算法嵌套在FCM算法的内层,用于优化类中心向量,提高算法的全局搜索能力.最后,运用GA-PSO-FCM算法对Iris data、Wine data、Zoo data、WPBC data和WDBC data进行仿真实验,并与基于有效性准则函数改进的FCM算法、GA-FCM算法的仿真结果进行比较,表明GA-PSO-FCM算法能在预先未知聚类数的情况下,提高分类结果的精确性和稳定性. 相似文献
14.
为了改善粒子群优化(particle swarm optimization, PSO)算法在处理复杂约束优化问题时的求解效果,提出了一种基于粒子群和人工蜂群的混合优化(particle swarm optimization artificial bee colony,PSO-ABC)算法。在采用可行性规则进行约束处理的基础上,将PSO种群分为可行子群和不可行子群,并在ABC算法从粒子种群中选择蜜源时,保留部分较优的可行解信息和约束违反程度较低的不可行解信息,弥补了联赛选择算子在处理最优点位于约束边界附近的问题时存在的不足。同时,使用禁忌表存储局部极值,减小了PSO算法陷入局部最优的危险。针对4个标准测试实例的实验结果表明,该算法能够寻得更优的约束最优化解,且稳健性更强。 相似文献
15.
粒子群优化(particle swarm optimization, PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic metaphor, PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方面较经典算法有很大程度的改善。 相似文献
16.
针对高技术知识创新非线性、不确定性、时变性的特点,建立了评价指标体系|结合粒子群优化算法,提出了一种改进的模糊神经网络评价模型。该模型能够进行多个并行时变模糊神经网络组合算法,这些算法通过进化预置网络的连接权值、阈值和补偿参数,实现网络的学习和精确推理。通过仿真应用,证明了此种模型结构与算法适用性好,便于计算机实现,且全局收敛能力、收敛速度和泛化精度等性能均优于原先的学习算法。 相似文献
17.
A novel adaptive sampling interval algorithm for multitarget tracking is presented.This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO).Firstly,the desired tracking accuracy is set for each target.Secondly,sampling intervals are selected as particles,and then the advantage of the GRG is taken as the measurement function for resource management.Meanwhile,the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy.Finally,it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest.Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar. 相似文献
18.
提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。 相似文献
19.
针对雷达自动目标识别中的高分辨距离像(high resolution range profile,HRRP)识别问题,提出自适应进化粒子群(adaptive evolution particle swarm optimization, AEPSO)算法优化支持向量机(support vector machine,SVM)的目标分类识别方法。该算法利用非线性自适应惯性权重的调整以适应粒子寻优的非线性变化过程,采用分阶段调节加速因子增强粒子在进化过程中的学习能力,通过引入局部搜索算子在增加粒子多样性的同时有效避免了粒子陷入局部最优陷阱。通过改进的PSO算法优化SVM参数,建立分类识别器模型。将该AEPSO-SVM模型应用到雷达HRRP目标识别中,实验结果表明,该算法对于高分辨雷达目标识别精度高、鲁棒性强。 相似文献