首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Recent insights into the conceptual structure of localization in QFT (modular localization) led to clarifications of old unsolved problems. The oldest one is the Einstein–Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute “holstic”. In fact it positions the E–J Gedankenexperiment into the same conceptual category as the cosmological constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from “modular localization” also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory.The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and localization and presenting alternative solutions based on the use of stringlocal fields in Hilbert space. Among other things this leads to a reformulation of the Englert–Higgs symmetry breaking mechanism.  相似文献   

2.
The main topics of this second part of a two-part essay are some consequences of the phenomenon of vacuum polarization as the most important physical manifestation of modular localization. Besides philosophically unexpected consequences, it has led to a new constructive “outside-inwards approach” in which the pointlike fields and the compactly localized operator algebras which they generate only appear from intersecting much simpler algebras localized in noncompact wedge regions whose generators have extremely mild almost free field behavior.Another consequence of vacuum polarization presented in this essay is the localization entropy near a causal horizon which follows a logarithmically modified area law in which a dimensionless area (the area divided by the square of dR where dR is the thickness of a light-sheet) appears. There are arguments that this logarithmically modified area law corresponds to the volume law of the standard heat bath thermal behavior. We also explain the symmetry enhancing effect of holographic projections onto the causal horizon of a region and show that the resulting infinite dimensional symmetry groups contain the Bondi–Metzner–Sachs group. This essay is the second part of a partitioned longer paper.  相似文献   

3.
The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation—a mathematical transformation that takes the time variable t to negative imaginary time—it—was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a “translation manual” between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in developments in pure mathematics as well as theoretical physics is another feature that this case study has in common with dualities in string theory.  相似文献   

4.
One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.  相似文献   

5.
In Of Quadrature by Ordinates (1695), Isaac Newton tried two methods for obtaining the Newton–Cotes formulae. The first method is extrapolation and the second one is the method of undetermined coefficients using the quadrature of monomials. The first method provides $n$ -ordinate Newton–Cotes formulae only for cases in which $n=3,4$ and 5. However this method provides another important formulae if the ratios of errors are corrected. It is proved that the second method is correct and provides the Newton–Cotes formulae. Present significance of each of the methods is given.  相似文献   

6.
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure.  相似文献   

7.
No-go theorems are known in the literature to the effect that, in relativistic quantum field theory, particle localizability in the strict sense violates relativistic causality. In order to account for particle phenomenology without particle ontology, Halvorson and Clifton (2002) proposed an approximate localization scheme. In a recent paper, Arageorgis and Stergiou (2013) proved a no-go result that suggests that, even within such a scheme, there would arise act–outcome correlations over the entire spacetime, thereby violating relativistic causality. Here, we show that this conclusion is untenable. In particular, we argue that one can recover particle phenomenology without having to give up relativistic causality.  相似文献   

8.
In today's quantum mechanics and quantum field theory, the observable signature of a symmetry is often sought in the form of a selection rule: a missing radiation frequency, a particle that does not decay in another one, a scattering process which fails to take place. The connection between selection rules and symmetries is effected thanks to the mathematical discipline of group theory. In the present paper, I will offer an overview of how the productive synergy between selection rules and group theory came to be. The first half of the work will be devoted to the emergence of the idea of spectroscopic selection rules in the context of the old quantum theory, showing how this notion was linked with an interpretive scheme of theoretical nature which, once combined with group theory, would bear many fruits. In the second part of the paper, I will focus on the actual encounter between selection rules and group theory, and on the person largely responsible for it: Eugene Wigner. I will attempt to reconstruct the path which led Wigner, of all people, to be the agent effecting this connection.  相似文献   

9.
Bell appealed to the theory of relativity in formulating his principle of local causality. But he maintained that quantum field theories do not conform to that principle, even when their field equations are relativistically covariant and their observable algebras satisfy a relativistically motivated microcausality condition. A pragmatist view of quantum theory and an interventionist approach to causation prompt the reevaluation of local causality and microcausality. Local causality cannot be understood as a reasonable requirement on relativistic quantum field theories: it is unmotivated even if applicable to them. But microcausality emerges as a sufficient condition for the consistent application of a relativistic quantum field theory.  相似文献   

10.
11.
The analyzability of the universe into subsystems requires a concept of the “independence” of the subsystems, of which the relativistic quantum world supports many distinct notions which either coincide or are trivial in the classical setting. The multitude of such notions and the complex relations between them will only be adumbrated here. The emphasis of the discussion is placed upon the warrant for and the consequences of a particular notion of subsystem independence, which, it is proposed, should be viewed as primary and, it is argued, provides a reasonable framework within which to sensibly speak of relativistic quantum subsystems.  相似文献   

12.
What if gravity satisfied the Klein–Gordon equation? Both particle physics from the 1920–30s and the 1890s Neumann–Seeliger modification of Newtonian gravity with exponential decay suggest considering a “graviton mass term” for gravity, which is algebraic in the potential. Unlike Nordström׳s “massless” theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman–Cunningham conformal group. It therefore exhibits the whole of Minkowski space–time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein׳s principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the ‘true’ geometry, one might wonder, in line with Poincaré׳s modal conventionality argument? Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy׳s trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers–Pirani–Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities—indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein׳s equations along the lines of Einstein׳s newly re-appreciated “physical strategy” and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam–Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th–21st century space–time philosophy in the light of particle physics. An appendix reconsiders the Malament–Weatherall–Manchak conformal restriction of conventionality and constructs the ‘universal force’ influencing the causal structure.Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space–time theory that would have blocked Moritz Schlick׳s supposed refutation of synthetic a priori knowledge, and how Einstein׳s false analogy between the Neumann–Seeliger–Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.  相似文献   

13.
The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and that it was reasonable for physicists to endorse it. Its possible failure to be realized in nature, as suggested by recent LHC data, thus represents an empirical challenge to certain foundational aspects of our understanding of QFT. In particular, I argue that its failure would undermine one class of recent proposals which claim that QFT provides us with a picture of the world as being structured into quasi-autonomous physical domains.  相似文献   

14.
Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on an experimenter's ability to perform operations on a field in one spacetime region that can disentangle its state from the state of the field in other spacelike-separated regions. These limitations show just how deeply entrenched entanglement is in relativistic quantum field theory, and yield a fresh perspective on the ways in which the theory differs conceptually from both standard non-relativistic quantum theory and classical relativistic field theory.  相似文献   

15.
John Norton's The Material Theory of Induction bristles with fresh insights and provocative ideas that provide a much needed stimulus to a stodgy if not moribund field. I use quantum mechanics (QM) as a medium for exploring some of these ideas. First, I note that QM offers more predictability than Newtonian mechanics for the Norton dome and other cases where classical determinism falters. But this ability of QM to partially cure the ills of classical determinism depends on facts about the quantum Hamiltonian operator that vary from case to case, providing an illustration of Norton's theme of the importance of contingent facts for inductive reasoning. Second, I agree with Norton that Bayesianism as developed for classical probability theory does not constitute a universal inference machine, and I use QM to explain the sense in which this is so. But at the same time I defend a brand of quantum Bayesianism as providing an illuminating account of how physicists' reasoning about quantum events. Third, I argue that if the probabilities induced by quantum states are regarded as objective chances then there are strong reasons to think that fair infinite lotteries are impossible in a quantum world.  相似文献   

16.
17.
In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent's degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities always represent degrees of belief. We then argue that a quantum state prepared by some physical device always depends on an agent's prior beliefs, implying that the probability-1 predictions derived from that state also depend on the agent's prior beliefs. Quantum certainty is therefore always some agent's certainty. Conversely, if facts about an experimental setup could imply agent-independent certainty for a measurement outcome, as in many Copenhagen-like interpretations, that outcome would effectively correspond to a preexisting system property. The idea that measurement outcomes occurring with certainty correspond to preexisting system properties is, however, in conflict with locality. We emphasize this by giving a version of an argument of Stairs [(1983). Quantum logic, realism, and value-definiteness. Philosophy of Science, 50, 578], which applies the Kochen–Specker theorem to an entangled bipartite system.  相似文献   

18.
The simplest case of quantum field theory on curved spacetime—that of the Klein–Gordon field on a globally hyperbolic spacetime—reveals a dilemma: In generic circumstances, either there is no dynamics for this quantum field, or else there is a dynamics that is not unitarily implementable. We do not try to resolve the dilemma here, but endeavour to spell out the consequences of seizing one or the other horn of the dilemma.  相似文献   

19.
William Whiston was one of the first British converts to Newtonian physics and his 1696 New theory of the earth is the first full-length popularization of the natural philosophy of the Principia. Impressed with his young protégé, Newton paved the way for Whiston to succeed him as Lucasian Professor of Mathematics in 1702. Already a leading Newtonian natural philosopher, Whiston also came to espouse Newton’s heretical antitrinitarianism in the middle of the first decade of the eighteenth century. In all, Whiston enjoyed twenty years of contact with Newton dating from 1694. Although they shared so much ideologically, the two men fell out when Whiston began to proclaim openly the heresy that Newton strove to conceal from the prying eyes of the public. This paper provides a full account of this crisis of publicity by outlining Whiston’s efforts to make both Newton’s natural philosophy and heterodox theology public through popular texts, broadsheets and coffee house lectures. Whiston’s attempts to draw Newton out through published hints and innuendos, combined with his very public religious crusade, rendered the erstwhile disciple a dangerous liability to the great man and helps explain Newton’s eventual break with him, along with his refusal to support Whiston’s nomination to the Royal Society. This study not only traces Whiston’s successes in preaching the gospel of Newton’s physics and theology, but demonstrates the ways in which Whiston, who resolutely refused to accept Newton’s epistemic distinction between ‘open’ and ‘closed’ forms of knowledge, transformed Newton’s grand programme into a singularly exoteric system and drove it into the public sphere.  相似文献   

20.
This article responds to Professor Andrew Janiak's recent attempt to defend the proposition that Isaac Newton did not believe in action at a distance between bodies (or any other kind of substance) (Janiak, 2013). His argument rests on a distinction between “three concepts of causation in Newton”, which leads him to conclude that although Newton did not believe in action at a distance between bodies, he was able to accept that gravity was a “distant action”. I critically examine Janiak's arguments here, and the historical evidence he brings to bear upon it, and argue that Professor Janiak's latest claims do nothing to undermine the view to which he is opposed, namely, that Newton did believe in the possibility of action at a distance between bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号