共查询到20条相似文献,搜索用时 15 毫秒
1.
文章给出了图是λ5-最优的邻域交条件.设G是一个λ5-连通图,定义ξ5(G)=min{|[X,]|:X∈V(G),|X|=5,G[X]连通},若λ5(G)=ξ3(G),则称G是λ5-最优的.若对G中任意一对不相邻的顶点u和v,都有|N(u)∩N(v)|≥5且G满足ξ3(G)≤V(G)/2+10,|V(G)|≥31,则... 相似文献
2.
设G是一个λ5-连通图,定义ξ5(G)=min{|[X,X]|:X■V(G),|X|=5,G[X]是连通子图},若λ5(G)=ξ5(G),则称G是λ5-最优图.文章给出了满足顶点数v≥17且最小度δ≥v/2-4的λ5-连通图G在一定特殊条件下是λ5-最优图的一个充分条件. 相似文献
3.
文章给出了二部图是λ4-最优的一个领域交条件.设n为一个不小于8的正整数,令G=(X∪Y,E)为一个n阶二部图且ξ4(G)≤n/2.若G有一个饱和X或Y中所有顶点的匹配且对任意的u,v∈X和u,v∈Y都有|N(u)∩N(v)|≥4,则G是λ4-最优的. 相似文献
4.
图是λ′最优和超级λ′的充分条件 总被引:1,自引:1,他引:0
设G是有限简单无向图,使G-S的每个分支都不含孤立的边割S称为G的限制边割.G的限制连连通度λ′(G)是G的限制边割之中最少的边数,定义ξ(G)=min{d(x)+d(y)-2;xy∈E(G)}为G的最小边度.如果λ′(G)=ξ(G),则称G是λ′最优的.若任意最小限制边割都弧立一边,则称图G是超级λ′的.应用范型度条件给出了图是λ′最优和超级λ′的令分条件. 相似文献
5.
图的k-限制边连通度是图的边连通度概念的推广,用它可以更加精确的度量网络的可靠性。通过讨论λ3-最优但非超级λ3-最优二部图的性质得到了二部图超级λ3-最优的充分条件。 相似文献
6.
为精确估计网络的可靠度,我们需要最优化其图模型的限制边连通度,证明一个n≥11阶最小度δ(G)≥[n/2]-3的λ4-连通图G,在一定的条件下是λ4-最优的.进而,若n≥12,则G是超级-λ3图.并举例说明了最小度的下界是最好可能的. 相似文献
7.
设G=(V,E)是有限简单无向图.如果G的每个最小限制边割都孤立出一条边,则称G是超级-λ′的.笔者在一定意义上改进了文献[7]给出的图为超级-λ′的一个充分条件. 相似文献
8.
作者给出了二部图是λ4-最优的和超级-λ4的范型条件,而且给出例子说明其独立性.这些结果在网络可靠性分析中有一定应用. 相似文献
9.
图是λ4-最优的一个充分条件 总被引:1,自引:0,他引:1
设G=(V,E)足有限简单无向图,U,是一个边割.若G-U的每个分支的阶至少是4,则称U为G的4阶限制边割.G的4阶限制边连通度λ4(G)是C的4阶限制边割之中最少的边数.对图G的一个子图F,令a(F)表示恰好有一个点在F上的边的数日,定义ξ4(G)=min{a(F):F是G的连通的导出子图,|F|=4}为F的4阶最小边度,用D,g,δ 分别表示G的直径,围长和最小度.本文证明了:如果|G|≥11,D≤g-6且δ≥3,那么λ4(G)=ξ4(G). 相似文献
10.
本文在对有限简单图给出 D_λ—连通的定义之后,证明了下述定理:设 G 是n 阶 k—连通(k≥3)的有限简单图,如果对任意的 Y∈I_k(G,λ),有sum from i=1 to k (k+i-2)/(k-1)s_i(Y、λ)>n-k(λ-1),则 G 是 D_λ—连通的. 相似文献
11.
文章给出了图的λ4-最优性的邻域交条件.设图G是阶至少为34的λ4-连通图,若对G中任意一对不相邻顶点u,v,都有|N(u)∩N(v)|≥6且ξ4(G)≤3n(G)/2+3,则G是λ4-最优的;若对于λ4-连通图G中任意一对不相邻顶点u,v,都有|N(u)∩N(v)|≥6且对图中每个三角形T至少存在一个顶点v∈V(T)... 相似文献
12.
张春跃 《南京师大学报(自然科学版)》1996,19(3):5-11
设图G是一个n阶简单图,G中的一个圈C称为Dλ一圈,如果G/V(C)的每个连能分支的阶都小于λ。当G是3-连通图,且有NCλ(G)≥n+4/2-2λ时,G含有Dλ-圈或G是Petersen图。 相似文献
13.
如果图G的每个最小限制边割都孤立出一条边,则称G是超级-λ′的.本文给出了直径为2的图是超级-λ′的一个充分条件. 相似文献
14.
设S是图G的一个边子集,若G-S不连通且每个分支的阶至少为k,则称S为G的一个k-限制边割.若G有k-限制连割,G的最小k-限制边割的边数称为G的k阶限制边连通度,记为λk(G).记ξk(G)=min{|[X,]|∶|X|=k,G|X|连通},若λk(G)=ξk(G),则称G是λK-最优的.证明了若对G中任意一对不相邻的顶点x,y都有d(x) d(y)≥n 2(k-2),且G不是G*k图,则G是λk-最优的. 相似文献
15.
设G是有限简单无向图,是G-U不连通,且G-U的每个分支的阶都至少为4的边集U称为G的4-限制边割。基数最小的4-限制边割称为λ4-割,最小基数称作4-限制边连通度,记作λ4=λ4(G)。若λ4(G)=ξ4(G),称G是λ4-最优的。若任意一个λ4-割都孤立一个四阶连通子图,则称G是超级-λ4的。应用邻域交条件给出了图是λ4-最优的和超级-λ4的充分条件。 相似文献
16.
为精确估计网络的可靠度,我们需要最优化其图模型的限制边连通度.本文证明了一个n阶连通图,当n≥10且最小度至少为[n/2]-2时,在一定的条件下这个图是λ3-最优的,并举例说明了这些条件的下界是最好可能的. 相似文献
17.
18.
图的λ3最优性的充分条件 总被引:3,自引:4,他引:3
设G=(V,E)是有限简单无向图,U是一个边割.若G-U的每个分支的阶至少是3,则称U为G的3阶限制边割.G的3阶限制边连通度λ3(G)是G的3阶限制边割之中最少的边数.设F是图G的一个子图,令a(F)表示恰好有一个点在F上的边的数目,定义ζ3(G)=min{a(F):F是G的3阶连通导出子图}.如果λ3(G)=ζ3(G),则称G是λ3最优的.本文给出了图的λ3最优性的一个充分条件. 相似文献
19.
20.
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。图G的最小限制边割的边数称为G的限制边连通度,记为λ'(G).如果图G的限制边连通度等于其最小度,则称图G是最优限制边连通的,简称λ'-最优的。设G是一个n阶的连通无三角图,且最小度δ(G)≥2.文章证明了,若最小边度ξ(G)≥(n/2-2 )(1+1/δ(G)-1),则G是λ'-最优的。并由此推出,若连通无三角图G的最小度δ(G)≥n/4+1,则G是λ'-最优的。最后给出例子说明这些结果给出的边界都是紧的。 相似文献