首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early tectonic uplift of the northern Tibetan Plateau   总被引:6,自引:0,他引:6  
The Hexi Corridor is the northmost foreland basin of the Tibetan Plateau and its formation is controlled by the northern marginal fault of Tibet, Altyn Tagh Fault (ATF)-North Qilian Shan marginal Fault (NQF), and the southern Kuantan Shan-Longshou Shan Fault (KLF). So its study is important to understanding the mechanism of Tibet formation and its influence on global climate change. The oldest Cenozoic sediments in the Corridor is the Huoshaogou Formation which consists of terrigenous fine conglomerate, sandstone, sandy mudstone and mudstone, depositing in al- luvial to lacustrine and fan delta sedimentary environments. Detailed paleomagnetic measurements of this sequence at Yumen clearly reveal eleven pairs of normal and reversed polarities. Fossil mammals found around the section support that most of the observed polarities can be well correlated with chrons between 13n and 18r of the standard geomagnetic polarity time scale, yielding ages of 40.2-33.35 Ma. The mean declinations of this sequence and its immediately above stratigraphy indicate an 18.3° rapid clockwise rotation of the Hexi Corridor. Since this sequence has been strongly folded and is capped by an angular unconformity, we think that the presence of the thick alluvial fan conglomeration at the bottom of the foreland basin may indicate the initial deformation and uplift of the northern Qilian Shan. This process could occur at latest at 40.2 Ma, driven by the faults NQF and KLF that thrust onto the Hexi corridor respectively from its southern and northern margins. These faults are in an early response to the collision of India with Asia, while the unconformable termination and rotation of the Huoshaogou Formation at -33.35 Ma indicate other early episode of rapid tectonic deformation and uplift of the northern Tibet.  相似文献   

2.
The Xining Basin on the northeastern Tibetan Plateau holds the longest continuous Cenozoic stratigraphic record in China. The sequence record contains considerable information on the history of Tibetan uplift and associated climatic change. In particular, high resolution n-alkane biomarker proxy and pollen records have been obtained from the Paleogene sediments of the Xiejia section of the basin. A combination of the n-alkane and palynological records reveals that the paleoclimate in the Xining Basin experienced a long-term cooling trend from 50.2 to 28.2 Ma with a distinctive ecological event spanning 37.5 to 32.7 Ma. Since this ecological event, a vertical zonation of vegetation from lowland arid grasses, to middle-elevation subtropical broad-leaf plants, to high-elevation coniferous trees was established. We interpret that these changes in climate and vegetation were probably responses to a combination of long term global cooling since the Eocene climatic optimum and uplift of the surrounding mountains on the northern Tibetan Plateau in the early Cenozoic.  相似文献   

3.
The Kunlun Pass Basin, located in the middle of the eastern Kunlun Mountains, received relatively continuous late Cenozoic sediments from the surrounding mountains, archiving great information to understand the deformation and uplift histories of the northern Tibetan Plateau. The Kunlun-Yellow River Movement, identified from the tectonomorphologic and sedimentary evolution of the Kunlun Pass Basin by Cui Zhijiu et al. (1997, 1998), is roughly coincident with many important global and Plateau climatic and environmental events, becoming a crucial time interval to understand tectonic-climatic interactions. However, the ages used to constrict the events remain great uncertainty. Here, we present the results of detailed magnetostratigraphy of the late Cenozoic sediments in the Kunlun Pass Basin, which show the basin sediments were formed between about 3.6 Ma and 0.5 Ma and the Kunlun-Yellow River Movement occurred at 1.2 to ~0.78 Ma. The lithology, sedimentary facies and lithofacies associations divide the basin into five stages of tectonosedimentary evolution, indicating the northern Tibetan Plateau having experienced five episodes of tectonic uplifts at ~3.6, 2.69-2.58, 1.77, 1.2, 0.87 and ~0.78 Ma since the Pliocene.  相似文献   

4.
Analyses of paleomagnetic polarity reversals, magnetic susceptibility and grain size on the red clay-loess sequence, about 280 m thick, at Jingbian show that this sequence contains most of the stratigraphic units recorded in the standard red clay-loess sections of the Loess Plateau over the past 3.5 Ma. Using sand particle percentage ( > 63 μm%) of the eolian sequence as a proxy indicator of desert extent and aridity in the dust source regions, it is found that during the past 3.5 Ma, there are three important climatic events indicating the advance of the Mu Us Desert. The events occurred at about 2.6, 1.1 and 0.6 MaBP, respectively. The stepwise advance of the Mu Us Desert may be linked closely to increase in global ice volume and uplift of the Tibetan Plateau in the late Cenozoic.  相似文献   

5.
青藏高原地面抬升证据讨论   总被引:27,自引:1,他引:26  
当前学术界在青藏高原地面何时达到现代高度问题上存在着许多不同观点,概括起来主要有3种:14Ma前已达到高于现代的最大高度,8Ma前已达到或超过现代高度,距今3.4Ma来分阶中强烈上升并逐步达到现代高度,之所以出现如此大的意见分歧,除高原面积广阔,研究程度不深和覆盖面不够的原因外,不同研究者所使用研究方法和证据的差异也是重要因素,在分析了各种证据对高原地面上升的记录机理后,我们认为夷平面、河流附地,  相似文献   

6.
Uplift of the Tibetan Plateau and environmental changes   总被引:7,自引:0,他引:7  
Major progress, problems, and challenges of recent investigation of the Tibetan Plateau uplift processes and resulting environmental changes are reviewed and summarized briefly, which especially covers the National Tibetan Research Projects of the Chinese Eighth (1992-1996) and Ninth (1997-2001) "Five-Year Projects". The Tibetan Plateau uplift is a complicated multiple cyclic process. The Gangdise and Himalayas began to uplift in the Middle Eocene and Early Miocene respectively, while the main part of the Plateau merely underwent corresponding passive deformation and secular denudation, resulting in two planation surfaces. The third and also the strongest uplift involved the whole Plateau and its marginal mountains commenced at 3.6 Ma. Successive Kunlun-Huanghe movement at 1.1-0.6 Ma and Gonghe movement at 0.15 Ma raised the Plateau to its present height. The Asian monsoonal system and Asian natural environment formed in response to these tectonic uplifts.  相似文献   

7.
We recovered the phylogenetic relationships among 23 species and subspecies of the highly special-ized grade schizothoracine fishes distributing at 36 geographical sites in the Tibetan Plateau and its surrounding regions by analyzing sequences of cytochrome b genes. Furthermore, we estimated the possible divergent times among lineages based on a historical geological isolation event in the Tibetan Plateau. The molecular data revealed that the highly specialized grade schizothoracine fishes were not a monophyletic group, but were the same as genera Gymnocypris and Schizogypsis. Our results indi-cated that the molecular phylogenetic relationships apparently reflected their geographical and historical associations with drainages, namely species from the same and adjacent drainages clustered together and had close relationships. The divergence times of different lineages were well consistent with the rapid uplift phases of the Tibetan Plateau in the late Cenozoic, suggesting that the origin and evolution of schizothoracine fishes were strongly influenced by environment changes resulting from the upheaval of the Tibetan Plateau.  相似文献   

8.
平衡剖面反映的柴西新生代变形对青藏高原隆升的响应   总被引:2,自引:0,他引:2  
柴达木盆地为一中新生代盆地,位于青藏高原北缘,盆内中新生代地层发育很好地记录了印度一欧亚板块自约55Ma以来碰撞传到高原北缘的地质事件.在最新的高精度磁性地层绝对年代控制下,通过盆内西部五条北东-南西向地震大剖面,用平衡剖面方法恢复了新生代以来盆地因两大板块碰撞而引起的地壳收敛缩短量.结果显示:在宏观上柴西地区存在两个相对快速收缩期:早始新世-渐新世和晚中新世或上新世-现今(E_(1+2)末-N_1,43.80~22.00Ma和N~2_2或N_2~3-现今,8.20或2.65~0Ma)和两个相对较弱收缩期:中生代末-早始新世和渐新世-晚中新世(M_z-E_(1+2)初期,65.00~43.80Ma和N_1末-N~2_2,22.00~2.65Ma)以及两个主要的断裂活动期次,早期路乐河组末-下干柴沟组上段时期(E_(1+2)-E_3~2)和晚期上油砂山组至今(N~2_2-Q).在微观上,盆地内部受自身断裂活动的控制,发育了独特的形态.表明在印欧板块碰撞高原隆升的早期,柴西地区就开始变形响应,随后盆地在整个新生代发展过程中,都处于板块碰撞高原隆升的大环境影响下而发生整体的变形缩短,同时自身的断裂活动控制了盆地的微观形态.  相似文献   

9.
Meng  XianWei  Xia  Peng  Zheng  Jun  Wang  XiangQin 《科学通报(英文版)》2011,56(6):547-551
Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau has been investigated in the study of global change. Core sediment samples drilled in the South China Sea during ODP Leg184 are the best materials for studying long-term variability of the East Asian monsoon. R-mode factor analysis of major elements in the fine grain-sized carbonate-free sediments (<4 μm) of the upper 185 mcd splice of ODP Site 1146 drilled during Leg184 in the South China Sea shows that Ti, TFe2O3, MgO, K2O, P, CaO, and Al2O3 are representative of a terrestrial factor. The variation in the terrestrial factor score is subject to chemical erosion in the source region and thus indicates the evolution of the East Asian summer monsoon. The terrestrial factor score has three stepwise decreases at ~1.3 Ma, ~0.9 Ma, and ~0.6 Ma, indicating the phased weakening of the East Asian summer monsoon is related to wholly stepwise, quick uplifts of the Tibetan Plateau since 1.8 Ma. The periodic fluctuation of the terrestrial factor score since ~0.6 Ma indicates that the glacial-interglacial cycles have been the main force driving the evolution of the East Asian monsoon. As in the case of Chinese loess, the long-term evolution of the East Asian monsoon recorded in sediments of the South China Sea reflects a coupled effect of the glacial-interglacial cycle and uplift of the Tibetan Plateau.  相似文献   

10.
The Late Tertiary red clay/bed sediments underlying the Quaternary loess-paleosol in the Chinese Loess Plateau possesses high-resolution paleoclimatic changes related to the uplift of the Tibetan Plateau. Magnetostratigra-phy and susceptibility measurements are discussed in this paper. The paleomagnetic results show that the red clay/bed began to accumulate at about 8.1 Ma, which represents the oldest Late Tertiary deposit continuously in the central Loess Plateau. The magnetic susceptibility curves show stepwise increases since the initiation of red clay, superimposed on several peaks. Moreover, the magnetic susceptibility increased abruptly since 3.8 Ma, which probably indicates the inception of the modern East Asia monsoon system. Between 3.8 and 2.6 Ma, the stepwise increases of susceptibility may imply progressively intensified East Asia summer monsoon activity related with the stepwise uplift process of the Tibetan Plateau.  相似文献   

11.
 青藏高原的隆升不仅是印度板块与亚洲板块碰撞导致的地球内部岩石圈地球动力学作用过程的结果,并且对全球和亚洲气候变化、亚洲地貌和地表环境过程及大量地内和地表矿产资源的形成分布产生了深刻影响。因而研究高原隆升的历史不仅对解决上述重大科学问题提供重要途径,而且可为高原区域资源环境的开发和可持续发展提供理论依据。简要回顾和梳理了国内外近年来,围绕青藏高原隆升所取得的主要进展。研究表明新生代青藏高原经历了多阶段、多幕次、准同步异幅且高原南北后期加速隆升的演化过程。具体可划分为55~30、25~10及8~0 Ma 3个主要生长隆升期次。其中55~30 Ma的高原早期隆升,主要集中在高原中南部的拉萨地块和羌塘地块,并且可能隆升到接近3 km高度,或甚至更高,有人称之为“原西藏高原”,但其周缘存在准同步异幅的变形隆升响应;25~10 Ma的中期隆升,“原西藏高原”南北缘的喜马拉雅山和可可西里-昆仑山开始强烈隆升,“原西藏高原”率先隆升到目前高度并开始向东西两侧挤出物质、拉张形成南北向裂谷,高原北缘普遍产生广泛变形隆升但幅度有限;从约8 Ma开始的晚期隆升,高原南、北部边缘的喜马拉雅山和昆仑山-西秦岭以北的高原东北部隆升显著加速,经历一系列短暂快速的多幕次构造变形和生长隆升,最终形成现今高原面貌。  相似文献   

12.
天水盆地位于青藏高原东北缘六盘山与西秦岭二重要构造带交汇处,该盆地充填的新生代沉积序列记录着该区构造变形历史,因此研究该盆地沉积记录对探讨青藏高原东北缘新生代构造活动事件具有重要意义.通过对天水盆地古近纪砾石层砂质透镜体中碎屑颗粒磷灰石裂变径迹热年代学研究,获得样品地层的最大沉积年龄为24.8士1.5 Ma.结合前人的工作,厘定该套古近纪地层最顶部地层年龄为22~24.8 Ma,并确定天水盆地古近纪沉积物源区在24.8 Ma左右发生了构造冷却事件,推断印度板块与欧亚大陆碰撞的远程效应在古近纪末-新近纪初已传递到青藏高原的最东北缘.  相似文献   

13.
青藏高原盆地系统演化与高原形成时间   总被引:4,自引:0,他引:4  
青藏高原在以时间为坐标的隆升过程中,高原的范围、高度都是呈阶段性递增的.随着青藏高原的构造隆升,在高原的内部和外围发育了众多的沉积盆地,在这些沉积盆地中详细地记录了青藏高原的隆升过程.高原北部盆地的演化显示出向北递进增长的特征,以南北挤压为动力背景的北部前陆盆地演化代表了盆地对高原周缘造山带的响应关系:金沙江缝合带、昆仑山、祁连山的新生代逆冲抬升的时间分别为53 Ma、46 Ma和29.5 Ma.对高原南北盆地-造山带的构造演化对比发现:祁连山和高喜马拉雅的逆冲时间相同,说明青藏高原在渐新世基本定型.  相似文献   

14.
Magnetic polarity stratigraphy of loess in West Qinling (Mts.) demonstrates that loess began to deposit in West Qinling at ca. 800 kaBP. Its material may come from the nearby Tibetan Plateau to the west. This suggests that a sharp change in air circulation and surface environment on and around the Tibetan Plateau occurred at that time.  相似文献   

15.
The dry climate which appeared about 8#x2013;7 Ma ago in South Asia has been interpreted as results of the intensification of Asian monsoon caused by the uplift of the Qinghai-Xizang Plateau at its maximum altitude around that time. Whether it is or not, it is a critical problem. A total of 55 samples were taken from the Tertiary red earth and Quaternary lacustrine deposits and loess in the Linxia Basin which is located in the northeastern margin of the Qinghai-Xizang Plateau, for the analysis of quartz types and contents using electron probe microanalyzer. The results indicate that the eolian sands have existed since 15Ma and reached its maximum content at 8 and 6#x2013;5 Ma, respectively. This means that the climate was very dry during 8-5 Ma period in western China, which was regarded as the result of global climatic change at that time. Mean size of quartz sand grains was about 0.4 mm during 15#x2013;3.6/2.6 Ma period and dropped to 0.1–0.07 mm dramatically after 3.6–2.6 Ma. This demonstrates that the local eolian deposition was decreased significantly and even disappeared since Late Pliocene and was replaced by dust deposits from distal source, suggesting the uplift of Qinghai-Xizang Plateau and the change of air circulation after 3.6–2.6 Ma.  相似文献   

16.
Mesozoic to Cenozoic petrified woods are very rich and well preserved in the Khorat Plateau, Northeast Thailand, serving as remarkable material for investigations of tropical vegetation history, paleoclimatic evolution, and paleoenvironmental changes. Our recent field survey and investigations have defined about 50 species of fossil wood assigned to 19 genera and 11 families from Mesozoic to Cenozoic deposits in this region. These woods are ascribed to two groups, gymnosperms and angiosperms. Among them, about 20 species assigned to 7 genera and 5 families are the first reports of the taxa in Thailand. The fossil wood floras indicate that during the late Mesozoic period, the tropical conifer vegetation in Northeast Thailand was dominated by the family Araucariaceae. From the Miocene to Pleistocene, a tropical climate prevailed in this region with perhaps both deciduous and evergreen broadleaf forests comprising the vegetation.  相似文献   

17.
黄河中游的地貌与地文期问题   总被引:25,自引:3,他引:25  
上起积石峡下至三门峡的黄河中游地区在晚新生代期间发育了一级夷平面、一级剥蚀面和七级河流阶地。夷平面形成于2.4Ma以前的晚第三纪,剥蚀面形成于2.4~1.8Ma B.P的第四纪初期;黄河的七级阶地分别是开始于1300、1100、780、590、140、50、10ka B.P的河流下切形成的,其原因在于构造的脉动式上升。基于上述研究成果,我们将每一地貌面形成的时期定义为一个地文期,它与其后因构造运动  相似文献   

18.
A Jurassic eutherian mammal and divergence of marsupials and placentals   总被引:2,自引:0,他引:2  
Luo ZX  Yuan CX  Meng QJ  Ji Q 《Nature》2011,476(7361):442-445
Placentals are the most abundant mammals that have diversified into every niche for vertebrates and dominated the world's terrestrial biotas in the Cenozoic. A critical event in mammalian history is the divergence of eutherians, the clade inclusive of all living placentals, from the metatherian-marsupial clade. Here we report the discovery of a new eutherian of 160?Myr from the Jurassic of China, which extends the first appearance of the eutherian-placental clade by about 35?Myr from the previous record, reducing and resolving a discrepancy between the previous fossil record and the molecular estimate for the placental-marsupial divergence. This mammal has scansorial forelimb features, and provides the ancestral condition for dental and other anatomical features of eutherians.  相似文献   

19.
青藏高原东南部地貌边界带晚新生代构造运动   总被引:1,自引:0,他引:1  
青藏高原是中国大陆最高一级地貌阶梯,其东南部地貌边界大致沿龙门山—大相岭—锦屏山—玉龙山—碧罗雪山一线分布。该文主要从青藏高原东南部地貌边界两侧的晚新生代地层记录来探讨晚新生代构造运动以及高原隆升。青藏高原东南部地貌边界带雏形出现于距今2.5Ma左右,定型于1.2Ma前的构造运动中,之后又在构造运动进程中不断得到加强,并最终形成今日之构造地貌格局。青藏高原从海变陆,并上升至平均海拔4500m以上,成为地球上最高的大高原,这是发生在晚新生代且主要是在第四纪最重大的地质事件。  相似文献   

20.
除周期性气候波动外,新生代气候变化的基本特征是阶梯状气候变冷、波动幅度的不断增加和气候波动周期的转变。深海氧同位素记录表明新生代曾发生至少三次快速变冷事件,它们分别发生在36,15和2.4MaBP前后。根据来自北大西洋的深海氧同位素记录,第四纪气候变化的趋势是波动幅度增加、频率降低。B/M界限附近,气候波动周期由41ka转变为100ka。黄土高原上黄土地层与磁化率研究揭示,现代东亚季风出现于2.4Ma前,并于1.1和0.6MaBP前后两度加强,现在的季风环流形势形成于0.6MaBP,米兰柯维奇理论不能解释上述新生代气候的阶梯状变冷、第四纪气候的阶段性和东亚季风的形成及加强,因此除轨道因素外,还有别的因素控制气候变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号