首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了解决单向比例泵控非对称液压缸系统的无超调位置控制问题,提出了采用带约束的三阶状态空间模型描述单向比例泵控非对称液压缸系统的方法,设计了一种适用于该模型的模型预测控制器来保证系统的无超调位置输出.仿真结果表明,运用模型预测方法能够避免换向阀切换引入的系统非线性,并有效解决泵控非对称液压缸系统的超调问题,实现多约束条件下的高精度位置控制.  相似文献   

2.
针对非对称阀控液压缸位置控制中出现超调与由阀芯换向引起的压力冲击问题,设计了基于支持向量机与序列二次规划算法的非线性模型预测控制器。采用支持向量机拟合控制信号与活塞速度的关系得到系统的近似模型,使用序列二次规划算法求解获取控制器输出;通过增加输出约束以及满足输入约束实现每次控制过程中阀芯不换向、活塞快速到达目标位置并且无超调。数值仿真结果表明:在相对位置误差信号大于8%时,控制器输出的控制信号始终大于最大控制信号的90%,有效缩短了系统的响应时间;在保证活塞位置无超调、阀芯不换向的条件下,实现了精确位置控制,稳态误差小于0.02%。所提算法实现了多约束条件下非对称阀控液压缸系统的无超调快速控制,具有一定的理论和工程价值。  相似文献   

3.
四通阀控非对称液压缸传递函数的分析和建立   总被引:1,自引:0,他引:1  
目前国内还未见针对四通阀控非对称液压缸传递函数的详细推导和研究,这就影响了采用此种动力元件的液压伺服系统动态性能的分析研究.针对上述情况,引入了液压缸负载流量等效面积Ap、液压缸负载压力等效面积Ac等参数,使负载流量qL和负载压降pL的定义既简单,又不失准确性,在此基础上,对四通阀控非对称液压缸的传递函数进行了深入的推导和分析.  相似文献   

4.
本文提出一种用被控对象的脉冲响应(或单位阶跃响应)时间序列描述系统的状态空间形式,进而将线性系统理论中的状态观测器和卡尔曼滤波器应用于模型法控制中,使得模型算法控制系统性能获得明显改善,而且大大减少控制在线计算量,最后给出一个液位控制系统的实验结果。  相似文献   

5.
6.
用鲁棒稳定性判据分析基于简化脉冲响应模型预测控制器的鲁棒性,得到了一般性鲁棒稳定性的结论,给出了建模误差的界。  相似文献   

7.
非对称液压缸的动态特性仿真研究   总被引:1,自引:0,他引:1  
根据液流的连续性原理,通过对非对称液压缸进行受力分析,研究非对称液压缸的动态特性。在此基础上,提出非对称液压缸的数学模型,得到了液压缸阻尼比、固有频率间的关系。根据其数学模型,运用MATLAB软件对挖掘机铲斗液压缸动态特性进行仿真,得到了非对称液压缸的速度响应曲线和大腔的压力曲线,直观地揭示了其动态特性。通过对影响铲斗液压缸动态特性的主要因素的分析,提出了加快其速度响应和改善其运动平稳性的实用措施,指出降低铲斗液压缸的超调量与提高铲斗液压缸的响应速度存在矛盾,需要针对具体情况协调考虑。  相似文献   

8.
针对噪声环境下输入带有约束的系统,传统的方法要处理一个二次规划问题.本文提出用最小化无约束二次性能指标得到的输入控制量的加权和代替该时刻的输入作用于系统.用这种方法将不存在不可行问题,使得控制输入的振荡范围减小,能大大减小违反约束的机率.仿真结果证明了算法的有效性.  相似文献   

9.
10.
为减小泵控马达系统中参数时变、外界扰动等不确定因素对调速性能的影响,提出了基于广义预测控制的控制方案,并设计了泵控马达系统调速性能测试试验台.给出了泵控马达调速系统的整体数学模型并得到其单输入单输出的传递函数.建立了泵控马达系统的受控自回归积分滑动平均模型,对广义预测算法进行推导.在液压马达转速受负载扰动、转动惯量变化两种情况下进行了仿真分析,通过仿真结果可以看出,采用该方案以后泵控马达系统的调速性能具有良好的跟踪性能和鲁棒性.图4,参10.  相似文献   

11.
Model Predictive Control(MPC) is a popular technique and has been successfully used in various industrial applications.Howver,the big drawback of MPC involved in the formidable online computational effort limits its applicability to relatively slow and/or small processes with a moderate number of inputs.This paper develops an aggregation optimization strategy for MPC that can imporove the computational efficiency of MPC.FOr the regulation problem.an input decaying aggregation optimization algorithm is presented by aggregating all the original optimized variables on control horizon with the decaying sequence in respect of the current control action.  相似文献   

12.
基于预测控制模型的一种状态空间实现   总被引:2,自引:0,他引:2  
以受控自回归滑动平均模型和受控自回归积分滑动平均模型为研究对象,根据估计理论,利用参数递推方法,构造了广义预测控制的一种状态空间实现,从而避免了解Diophantine方程,大大地减少了预估算法的计算量,为控制系统的性能分析提供了便利条件,文末,对状态空间实现的可控与可观性加以了证明。  相似文献   

13.
建立车辆侧向动力学模块、车辆传感模块、道路曲率预瞄模块.在传统模型预测控制(MPC)算法的基础上,利用辛普森法则,结合车道保持优化性能指标和系统约束,设计基于自适应模型预测控制的车道保持控制策略.在Simulink环境下,将其与基于传统模型预测控制器进行比较分析.仿真结果表明:相较于模型预测控制,自适应MPC能够在各控制周期实现车辆模型更新,在强非线性工况下具备较好的鲁棒性,进而能够保证行车安全的前提下,获取较好的乘坐舒适性.  相似文献   

14.
提出一种基于非合作模型预测控制(model predictive control, MPC)的智能汽车人机共驾策略.首先,建立了驾驶员和控制系统两者共同控制车辆的人机共驾系统模型.接着,得到了驾驶员和控制系统的代价函数.然后,求解了非合作MPC人机共驾策略的纳什均衡解.最后,通过仿真验证了非合作MPC人机共驾策略的优点和有效性.证明了非合作MPC的纳什均衡解可以通过非迭代的方法求解,并通过驾驶员和控制系统置信度矩阵的更新实现了驾驶权的逐渐交接.Matlab仿真表明,非合作MPC人机共驾策略可以在智能车辆遇到危险时将驾驶权逐渐从驾驶员转交给控制系统,同时保证驾驶员实时在环.  相似文献   

15.
应用线性系统理论对预估控制系统进行了理论分析。结果表明 ,在状态反馈预估控制系统设计中 ,预估控制律对非奇异的线性变换及非奇异的输入变换具有不变性 ,并且状态反馈预估控制不改变系统的零点。该结果为状态反馈预估控制系统的分析与设计及实际应用提供了理论依据。  相似文献   

16.
提出一种基于灰预测理论的抗扰动模型预测控制方法。首先推导出模型预测控制系统中干扰量与输出误差之间的解析关系;利用系统已知输出误差建立稳定灰预测模型,预测系统未来时刻的输出误差;根据干扰量与输出误差之间的关系,采用反馈输出误差预测值的方法,实现对系统干扰量的前馈补偿控制。对模型预测控制PMSM调速系统进行仿真实验,选择出干扰观测器抗扰动方法中的最优干扰模型结构;对两种抗扰动方法比较分析得出,基于灰预测理论的抗扰动模型预测控制不需要考虑干扰模型结构,简化了系统设计、提高了系统自适应性,同时能够获得与优化干扰观测器模型预测控制一样的性能。  相似文献   

17.
为了解决自动驾驶车辆变速行驶时模型预测路径跟踪控制器的可靠性问题,提出一种变预测时域自适应路径跟踪控制方法.首先,推导简化后适用于仿真验证的车辆三自由度动力学模型,引入松弛因子以避免求解过程中出现非可行解,并将跟踪控制转化为二次规划求解问题;然后,确定模型预测控制器的重要设计参数,分析车速和预测时域的变化关系,拟合预测时域与车速的函数曲线,设计一种变时域自适应路径跟踪控制器;最后,搭建Carsim/Matlab/Simulink联合仿真平台进行验证.结果表明:变时域自适应路径跟踪控制器能够随着车速变化实时更新预测时域,可保证车辆具有较好的跟踪精度和稳定性.  相似文献   

18.
针对混联式混合动力系统,为减小其由混合驱动模式切换至纯电驱动模式过程中发动机停机引起的整车纵向冲击,利用模型预测控制算法可以在线滚动优化获得最优控制序列的特点,提出了一种基于模型预测控制的发动机停机优化控制策略. 首先,采用理论与试验相结合的研究方法,建立了发动机阻力矩模型;其次,依据动力元件工作状态的不同,将发动机停机过程划分为发动机工作点调整阶段和电机反拖发动机阶段,设计了分段式发动机停机控制策略;最后,通过仿真对所设计的控制策略进行了验证,并与传统基于比例-积分-微分的控制方法进行了对比. 仿真结果表明,所提出的控制策略能有效抑制发动机停机过程中的输出转矩波动,降低整车冲击度,提高车辆行驶的平顺性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号