首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 890 毫秒
1.
为研究B+F双相X80管线钢各向异性对安全服役的影响,采用金相扫描电镜观察、慢应变拉伸法和电化学极化法,在模拟海水环境中,与轧制方向呈0°,45°,90° 3种不同角度试样的B+F双相X80管线钢的慢应变拉伸和极化行为进行了分析。结果表明:双相X80管线钢组织由多边形铁素体和板条状贝氏体组成,铁素体和贝氏体含量近似为1∶1;在模拟海水环境慢拉伸条件下,B+F双相X80管线钢与轧制方向呈不同角度试样的屈服强度随取样角度的增大明显降低,说明海水对B+F双相X80管线钢具有明显的应力腐蚀作用;与轧制方向呈0°试样的X80管线钢的慢应变拉伸应力与应变曲线呈圆顶状,屈服强度和抗拉强度均最高,屈强比为0.81,均匀伸长率为13.4%,可以满足使用要求;与轧制方向呈90°试样的双相X80管线钢的自腐蚀电位最负,自腐蚀电流最大,耐海水腐蚀性能最差;与轧制方向呈45°试样的双相X80管线钢的自腐蚀电位最正,耐蚀性最优。研究B+F双相X80管线钢在模拟海水中的慢应变拉伸各向异性,可提高其安全服役性,对大变形管线钢的实际生产具有一定的借鉴价值。  相似文献   

2.
运用原位拉伸扫描电子显微镜的观察方法和微观取向分析手段,对比分析了2种高强度级别管线钢X100和X80的动态塑性变形行为.结果表明:X100和X80的微观组织均主要由针状铁素体、粒状贝氏体和M/A岛状组织组成;在拉伸应力的作用下,X100级管线钢的针状铁素体首先发生形变,且随着应变的增加、针状铁素体应变量的累积而导致粒状贝氏体发生形变,其氧化夹杂物成为微裂纹成核的核心,并随着拉伸应力的增加而扩展、连接并导致裂纹贯穿基体,直至失效,在发生形变后,其晶体的{111}晶面沿拉伸形变方向转动;X80级管线钢原位拉伸产生了滑移带,并发生形变,直至断裂.
  相似文献   

3.
采用金相和电子背散射衍射分析、准静态拉伸及数值模拟方法,研究了X70抗大变形管线钢管的组织结构、形变硬化性能及其可采用的表征方法.结果表明:X70抗大变形管线钢在整个塑性应变区域内不符合Hollomon公式,不具有确定的形变硬化指数n;在管线钢塑性变形的起始阶段n较大,但随着应变增大n快速减小;当总应变达到2.0%之后,形变硬化能力趋于稳定.工程应用中利用Rt1.5/Rt0.5、R2.0.0/Rt1.0和Rt5.0/Rt1.0三个应力比可以较好地描述抗大变形管线钢的形变硬化性能.当Rt1.5/Rt0.5≥1.070、Rt2.0/Rt1.0≥1.025、Rt5.0/Rt1.0≥1.050时,可使钢管压缩侧2倍管径长度上的平均压缩应变大于1.3%.  相似文献   

4.
结构钢纤维状多相复合组织的形变硬化指数   总被引:1,自引:0,他引:1  
对结构钢中获得的纤维状马氏体+贝氏体+铁素体+奥氏体多相复合组织的形变硬化指数及其与显微组织的关系进行了研究,采用Hollomon方程对应力-应变曲线进行拟合,救是n值,在均匀变形阶段,该复合组织具有高的形变硬化指数,有二个n值,n1〉n2值,其中n2值与最大均匀应变εu,抗拉强度σb有明量的对应关系,随等温温度降低,n2值增加εu,σb随之提高,n1值主要受拉于铁素体的强化状况,n2值与各相形变  相似文献   

5.
采用MTS Landmark 370型万能机研究了全壁厚铁素体/贝氏体双相X80管线钢的疲劳性能,并通过SEM方法对钢的组织及断口进行了分析。结果表明,铁素体/贝氏体双相钢中的铁素体有大角度晶界,而贝氏体由小角度晶界的贝氏体铁素体及细小的马氏体/奥氏体(M/A)岛构成。疲劳裂纹主要在钢板表面凹坑处萌生;疲劳强度S与寿命N的关系为S=2 973×N-0.14;在裂纹扩展过程中,铁素体晶界、贝氏体及贝氏体组织中的M/A岛对疲劳裂纹扩展有抑制作用。  相似文献   

6.
通过扫描电子显微镜、透射电子显微镜以及相应的力学性能测试,观察和分析了X100级管线钢塑性形变前后的微观组织及其韧性变化情况.结果表明:在相同的温度和时间条件下,随着应变量增加,针状铁素体和粒状贝氏体组织均发生形变,高密度位错在M/A岛周围积聚并形成亚晶界和晶界;形变后的晶粒变小,内部仍分布着许多亚晶界结构,且晶界的M/A组织和形变后组织内部缺陷降低了材料的冲击功;X100级管线钢在-34 °C以内的应变时效敏感系数满足要求.  相似文献   

7.
为探究双相X80管线钢在沿海土壤模拟溶液环境中的腐蚀机理,采用极化曲线、慢应变速率拉伸试验(SSRT)和交流阻抗(EIS)法对不同外加电位(-750,-900和-1 050 mV vs.饱和甘汞电极(SCE))下双相X80管线钢的应力腐蚀和电化学腐蚀行为进行研究。结果表明,双相X80管线钢在-1 050 mV电位下对应力腐蚀(SCC)最为敏感。慢应变拉伸呈现为脆性断裂,断口可见铁素体区域圆形或椭圆形的凹坑,这是由于过度阴极反应产生的氢原子扩散进入到钢中在铁素体晶界聚集,氢气析出产生的较高氢压超过材料的强度产生圆形孔洞,在拉伸应力作用下变为椭圆形。在此电位下EIS模拟电阻最小,耐腐蚀性最差。-750 mV的外加电位可起到一定的电化学保护作用,但不足以防止X80管线钢应力腐蚀的发生。-900 mV的外加电位可有效抑制X80管线钢的阳极溶解,SSRT的强度和延展性均高于0 mV电位试样,表现出韧性断裂特征,EIS模拟电阻最高,因此双相X80管线钢在模拟海岸土壤环境下最佳的阴极保护电位约为-900 mV vs. SCE。双相X80管线钢在沿海土壤模拟环境中的应力腐蚀行为的研究可对其在实际使用过...  相似文献   

8.
采用微观组织观察和准静态拉伸试验分析了冷速对X80管线钢的淬火双相组织及其应变硬化行为的影响.结果表明:X80管线钢通过淬火热处理获得铁素体+贝氏体的双相组织;随着冷速的降低,铁素体体积分数增加,强度降低,均匀伸长率增加;当铁素体体积分数不小于5.27%时,应变硬化指数与材料的均匀伸长率正相关,与屈强比负相关;当铁素体体积分数达到22.80%时,加工硬化率经历先快、后慢的两个下降阶段,后一阶段推迟了颈缩变形;淬火组织中的贝氏体随着冷速的降低,形貌由板条状转变为粒状,并生成了MA组元,通过位错强化、第二相强化机制的转换保证加工硬化性能,提高了均匀塑性变形能力.  相似文献   

9.
低碳钢过冷奥氏体形变过程组织演变机制   总被引:7,自引:4,他引:7  
低碳钢过冷奥氏体形变过程将发生形变强化相变及铁素体的动态再结晶,导致晶粒超细化.与未形变的过冷奥氏体等温转变相比,形变极大地促进了奥氏体向铁素体的转变,使铁素体形核率急剧升高,铁素体晶粒尺寸显著降低.形变强化相变是一以形核为主的过程.在形变后期,当形变强化相变铁素体转变基本完成后,将发生铁素体的动态回复和动态再结晶.比较不同应变速率对组织演变影响的结果表明,应变速率较低条件下,易形成铁素体与第2组织层状分布的条带特征;应变速率较高时,组织的条带特征不显著.  相似文献   

10.
开发描述含铌微合金钢软化行为的再结晶及形变诱导析出模型,并对奥氏体再结晶动力学和结晶组织演变进行了模拟计算。在此基础上建立了计算精轧过程应力-应变曲线的流变应力模型,根据现场数据预测了X46级管线钢精轧过程中的轧制压力。结果表明,该模型的计算结果与实测值吻合较好,反映了工业生产的实际。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号