首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对密集杂波下现有的多机动目标跟踪算法性能衰减严重的问题,提出了一种标签多伯努利目标跟踪与分类算法。首先,引入类别信息对目标状态进行扩维;然后利用类别属性对目标机动模型转移密度进行修正,并推导新的状态转移密度函数,抑制了错误机动模型对目标状态预测的影响;同时,建立目标位置与属性的联合量测似然函数,增大了目标与杂波的区分度,从而增强杂波抑制能力;最后,基于多模型标签多伯努利滤波器框架推导了新的预测、更新方程。仿真实验结果表明:所提算法在高杂波环境下仍能对多机动目标进行有效跟踪,其目标数估计误差及最优子模式分配距离分别约为多模型概率假设密度联合检测、跟踪、分类滤波器的1/2和1/4,为多模型势平衡多伯努利联合检测、跟踪、分类滤波器的3/4和1/2。  相似文献   

2.
针对未知杂波和检测概率的跟踪环境下,标准的标签多伯努利(LMB)算法对机动目标跟踪性能较差等问题,提出鲁棒标签多伯努利机动目标跟踪算法(R-LMB).首先建立真实目标、杂波与检测概率的增广空间模型,然后结合多模型(MM)系统,推导出基于蒙特卡罗(SMC)实现的带有状态标签和LMB元素标签的预测与更新方程.研究结果表明:在杂波和检测概率先验未知的情况下,所提出的算法可实现对目标数和目标状态的准确估计,同时在低检测概率和高杂波强度环境中仍可保证良好的多机动目标跟踪性能.  相似文献   

3.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。  相似文献   

4.
一种新的多机动目标跟踪的GMPHD滤波算法   总被引:1,自引:0,他引:1  
针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过了棘手的数据关联问题,能高效处理目标数较大的机动跟踪问题.在漏检、虚警、多机动目标交叉杂波复杂环境下进行了仿真实验,结果表明,该算法具有较高的跟踪精度和稳健的跟踪性能.  相似文献   

5.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性.   相似文献   

6.
粒子滤波算法中通常采用先验转移概率代替重要性函数,由此重要性密度函数对后验函数的偏差将增大。将小波去噪应用到粒子滤波过程中,降低了偏差,提高了粒子算法的滤波精度,并将该算法应用到目标跟踪的过程中,通过仿真证实该方法能够提高粒子滤波精度。  相似文献   

7.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性.  相似文献   

8.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性。  相似文献   

9.
为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法. 算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目. 实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪.   相似文献   

10.
一种基于多特征融合的粒子滤波目标跟踪算法   总被引:1,自引:0,他引:1  
针对采用单一图像特征进行目标跟踪时鲁棒性不高的问题,提出一种基于多特征融合的目标跟踪算法.该方法利用颜色特征和纹理特征描述目标,并将二者融合于粒子滤波框架中,提高了目标跟踪的稳定性,同时也在一定程度上克服了目标跟踪中光照变化时跟踪效果较差等缺点.实验结果表明,该文算法不仅提高了目标跟踪精度,而且具有较强的鲁棒性.  相似文献   

11.
基于粒子滤波的目标跟踪,跟踪的成功率和精度与目标运动速度和算法的粒子数密切相关.较大的粒子数能够跟踪速度更快的目标,同时提高跟踪的精度,但会降低算法的实时性.为了解决这个问题,提出一种两阶段混合粒子滤波算法,在第一阶段中,利用少量粒子基于距离角度模型对目标的位置进行粗略估计.在第二阶段中,利用均值偏移算法对目标位置进行精确估计,同时利用粒子滤波对均值偏移的窗口进行自适应调整.实验表明,提出的两阶段混合粒子滤波算法,不仅能够实时地跟踪尺寸变化的目标,而且能够跟踪运动速度快的目标.  相似文献   

12.
目标跟踪就是对目标在每个时刻的状态作实时精确的估计。根据目标在运动过程中具有轨迹连续性的特点,采用最小二乘滤波在观测数据的基础上对目标的状态进行了估计。论文对完全最小二乘滤波算法和递推增广最小二乘算法在目标跟踪的应用作了研究,通过仿真实验并对算法的跟踪性能进行了分析。结果表明:递推增广最小二乘算法的性能优于完全最小二乘滤波算法的性能。  相似文献   

13.
用于弹道目标跟踪的有限差分扩展卡尔曼滤波算法   总被引:2,自引:0,他引:2  
针对目前常用的滤波算法不能同时做到精确和高效跟踪目标的缺点,提出一种有限差分扩展卡尔曼滤波(FDEKF)算法用于再入阶段的弹道目标跟踪.该算法应用有限差分运算得到滤波的验前、验后误差协方差矩阵,避免了非线性函数求导运算,以及Jacobian阵和Hessian阵的计算,降低了计算难度,扩大了应用范围,增强了滤波过程的收敛性.Mome Carlo 数值仿真表明,FDEKF算法与扩展卡尔曼滤波(EKF)算法和无味卡尔曼滤波(UKF)算法相比较,在跟踪精度上比EKF算法提高了约20%,与UKF算法相当,在计算复杂度上比EKF算法稍有增加,但比UKF算法低约39%.这说明FDEKF算法在计算量增加不多的情况下,滤波精度有显著提高.  相似文献   

14.
对匀速直线运动目标跟踪的转换坐标卡尔曼滤波算法   总被引:3,自引:0,他引:3  
文章根据某型雷达对空间匀速直线运动目标的跟踪要求,采用了转换坐标卡尔曼滤波跟踪算法.在转换坐标卡尔曼滤波跟踪算法中,球坐标系下互相独立的观测噪声变换到直角坐标系下时将变成相关噪声,在解出此相关噪声的方差后即可按标准的卡尔曼滤波算法对目标进行跟踪,仿真结果显示,该算法收敛迅速,精度可以满足雷达对空间机动目标的跟踪要求.  相似文献   

15.
目标跟踪技术一直是计算机视觉的核心内容。本文结合粒子滤波与Mean-shift跟踪方法,提出了一种新的自适应目标跟踪方法,通过利用粒子滤波获取目标的初始位置,进而采用Mean-shift跟踪方法,实现目标跟踪的准确定位,同时,通过抑制背景特征分布,更新目标特征分布,从而在跟踪过程中自适应调整目标的模板表示。实验结果表明了本文提出方法的有效性。  相似文献   

16.
针对传统的基于压缩感知技术的目标跟踪算法存在的跟踪漂移问题,提出了一种采用改进压缩感知算法和卡尔曼滤波方法相结合的车辆目标跟踪算法. 首先,通过传统压缩感知目标跟踪算法识别出本帧目标存在概率最大的区域得到观测值; 其次,利用卡尔曼滤波预测本帧的跟踪轨迹得到预测值,通过卡尔曼滤波增益系数对预测值与观测值进行修正,获得最终目标跟踪结果; 最后,在修正后的目标区域周围进行正负样本采样以实现朴素贝叶斯分类器更新,进而实现目标跟踪轨迹的实时更新. 通过实验室试验以及野外实测验证了所提方法的可行性,相较于基于压缩感知技术的目标跟踪算法,本文所提方法的跟踪结果平均误差分别降低了48%和89%,跟踪轨迹更加趋近车辆真实运动轨迹.  相似文献   

17.
多摄像头目标跟踪动态单应投影方法研究   总被引:2,自引:0,他引:2  
动态单应投影变换算法利用各个摄像头之间的相对位置参数,并基于文中所给出的光轴辅助坐标变换方法,可以快速地计算出各个视角间单应变换矩阵的参数,通过该变换可以实现各视角图像间的快速投影.这种快速投影变换方法不需要通过匹配视角间图像的像素点对来计算单应矩阵参数,而是直接利用摄像头内部固定参数和外部相对位置参数快速计算视角间图...  相似文献   

18.
研究机载前视红外(FLIR)系统中鲁棒的目标跟踪算法.在传统的粒子滤波中嵌入信赖域寻优方法,发挥了它们各自的优点.在重要性重采样之前,将所有的粒子点都置于状态空间中恰当的位置,只用少量的粒子点就可以保持住多个模态,并解决了传统粒子滤波中的采样恶化和采样枯竭问题.实验结果显示了该方法的有效性和鲁棒性.  相似文献   

19.
针对无线传感器网络环境下的机动目标跟踪问题,提出了一种描述目标机动加速度的目标状态空间模型,以此模型为基础开发出基于粒子滤波的单目标和多目标跟踪算法.基本思想是:在状态空间中通过寻找一组传播的随机样本来获得近似后验概率分布,并以样本均值代替积分运算,从而求得最小状态方差估计.仿真结果表明,所提算法可以较好地解决无线传感器网络环境下的机动目标跟踪问题,速度跟踪精度、机动加速度跟踪精度均较经典分布式粒子滤波算法分别提高20%、27%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号