首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8+ T cells, providing the basis for immune recognition of pathogen-infected cells. Peptides generated mainly by proteasomes in the cytosol are transported into the lumen of the endoplasmic reticulum by transporters associated with antigen processing (TAP). The maturation of MHC class I molecules is controlled by a number of accessory proteins and chaperones that are to a varying degree dedicated to the assembly of MHC class I. Several newly characterised proteins have been demonstrated to play important roles in this process. This review focuses on the functional relationship and evolutionary history of the antigen-processing machinery (APM) components and MHC class I itself. These are of great interest for further elucidating the origin of the immune system and understanding the mechanisms of antigen presentation and immunology in general.  相似文献   

2.
3.
A challenging task for the adaptive immune system of vertebrates is to identify and eliminate intracellular antigens. Therefore a highly specialized antigen presentation machinery has evolved to display fragments of newly synthesized proteins to effector cells of the immune system at the cell surface. After proteasomal degradation of unwanted proteins or defective ribosome products, resulting peptides are translocated into the endoplasmic reticulum by the transporter associated with antigen processing and loaded onto major histocompatibility complex (MHC) class I molecules. Peptide-MHC I complexes are transported via the secretory pathway to the cell surface where they are then inspected by cytotoxic T lymphocytes, which can trigger an immune response. This review summarizes the current view of the intracellular machinery of antigen processing and of viral immune escape mechanisms to circumvent destruction by the host. Received 4 October 2005; received after revision 19 November 2005; accepted 24 November 2005  相似文献   

4.
5.
Cryptic MHC I-associated peptides (MAPs) are produced via two mechanisms: translation of protein-coding genes in non-canonical reading frames and translation of allegedly non-coding sequences. In general, cryptic MAPs are coded by relatively short open reading frames whose translation can be regulated at the level of initiation, elongation or termination. In contrast to conventional MAPs, the processing of cryptic MAPs is frequently proteasome independent. The existence of cryptic MAPs derived from allegedly non-coding regions enlarges the scope of CD8 T cell immunosurveillance from a mere ~2% to as much as ~75% of the human genome. Considering that 99% of cancer-specific mutations are located in those allegedly non-coding regions, cryptic MAPs could furthermore represent a particularly rich source of tumor-specific antigens. However, extensive proteogenomic analyses will be required to determine the breath as well as the temporal and spatial plasticity of the cryptic MAP repertoire in normal and neoplastic cells.  相似文献   

6.
Tumor immunotherapy is currently receiving close scrutiny. However, with the identification of tumor antigens and their production by recombinant means, the use of cytokines and knowledge of major histocompatibility complex (MHC) class I and class II presentation has provided ample reagents for use and clear indications of how they should be used. At this time, much attention is focused on using peptides to be presented by MHC class I molecules to both induce and be targets for CD8+ cytolytic T cells. Many peptides generated endogenously or given exogenously can enter the class I pathway, but a number of other methods of entering this pathway are also known and are discussed in detail herein. While the review concentrates on inducing cytotoxic T cells (CTLs), it is becoming increasingly apparent that other modes of immunotherapy would be desirable, such as class II presentation to induce increased helper activity (for CTL), but also activating macrophages to be effective against tumor cells.  相似文献   

7.
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.  相似文献   

8.
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD(0), which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD(0) recruits tapasin in a 1:1 stoichiometry. Although the TMD(0)s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD(0)s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.  相似文献   

9.
It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation.  相似文献   

10.
Helper T lymphocytes recognize peptide fragments of antigen bound to Major Histocompatibility Complex (MHC) class II molecules on the surfaces of antigen presenting cells (APC). Antigen processing involves internalization of the antigen into an acidic compartment where the antigen is degraded and the resulting peptide fragments of the antigen are bound to MHC class II molecules and the complexes subsequently displayed at the APC surface. Thus, antigen processing represents a complex, intracellular assembly process which may, like many intracellular protein folding and assembly processes, require the function of molecular chaperones. This contribution focuses on the evidence which suggests that members of the heat shock protein family of molecular chaperones play a role in this pathway.  相似文献   

11.
CD8+ T lymphocytes screen the surface of all cells in the body to detect pathogen infection or oncogenic transformation. They recognize peptides derived from cellular proteins displayed at the plasma membrane by major histocompatibility complex (MHC) class I molecules. Peptides are mostly by-products of cytosolic proteolytic enzymes. Peptidic ligands of MHC class I molecules are also generated in the secretory and vesicular pathways. Features of protein substrates, of proteases and of available MHC class I molecules for loading peptides in these compartments shape a singular collection of ligands that also contain different, longer, and lower affinity peptides than ligands produced in the cytosol. Especially in individuals who lack the transporters associated with antigen processing, TAP, and in infected and tumor cells where TAP is blocked, which thus have no supply of peptides derived from the cytosol, MHC class I ligands generated in the secretory and vesicular pathways contribute to shaping the CD8+ T lymphocyte response.  相似文献   

12.
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells.  相似文献   

13.
Peptide ligands presented by MHC class I molecules are produced by intracellular proteolysis, which often involves multiple steps. Initial antigen degradation seems to rely almost invariably on the proteasome, although tripeptidyl peptidase II (TPP II) and insulin-degrading enzyme (IDE) may be able to substitute for the proteasome in rare cases. Recent evidence suggests that the net effect of cytosolic aminopeptidases is destruction of potential class I ligands, although a positive role in selected cases has been documented. This may apply particularly to the trimming of long precursors by TPP II. In contrast, trimming of ligand precursors in the endoplasmic reticulum is essential for the generation of suitable peptides and has a substantial impact on the repertoire of ligands presented. Trimming by the ER aminopeptidase (ERAP) enzymes most likely acts on free precursors and is adapted to the needs of class I molecules by way of a molecular ruler mechanism. Trimming by ERAP enzymes also occurs for cross-presented ligands, which can alternatively be processed in a special endosomal compartment by insulin-regulated aminopeptidase.  相似文献   

14.
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).Received 26 November 2004; received after revision 4 February 2005; accepted 4 March 2005S. Tenzer and B. Peters contributed equally to this work.  相似文献   

15.
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.  相似文献   

16.
Like ubiquitin (Ub), the ubiquitin-like protein FAT10 can serve as a signal for proteasome-dependent protein degradation. Here, we investigated the contribution of FAT10 substrate modification to MHC class I antigen presentation. We show that N-terminal modification of the human cytomegalovirus-derived pp65 antigen to FAT10 facilitates direct presentation and dendritic cell-mediated cross-presentation of the HLA-A2 restricted pp65(495-503) epitope. Interestingly, our data indicate that the pp65 presentation initiated by either FAT10 or Ub partially relied on the 19S proteasome subunit Rpn10 (S5a). However, FAT10 distinguished itself from Ub in that it promoted a pp65 response which was not influenced by immunoproteasomes or PA28. Further divergence occurred at the level of Ub-binding proteins with NUB1 supporting the pp65 presentation arising from FAT10, while it exerted no effect on that initiated by Ub. Collectively, our data establish FAT10 modification as a distinct and alternative signal for facilitated MHC class I antigen presentation.  相似文献   

17.
The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses.  相似文献   

18.
Assembly of functional major histocompatibility complex (MHC) class I peptide complexes within the endoplasmic reticulum is critically important for the development of an adaptive immune response. The highly regulated loading of peptides onto MHC class I molecules is controlled by a multi-component chaperone system called the MHC class I peptide loading complex. The recent identification of the thioredoxin family member ERp57 as a component of the loading complex led to an interesting question: Why is there a thiol-disulfide oxidoreductase inside a complex dedicated to inserting peptides into a receptor binding site? Most recently, specific ERp57-mediated disulfide bond rearrangements have been identified inside the loading complex. What these biochemical events mean for the peptide loading process remains a matter of conjecture. While several important questions wait to be answered, this review intends to summarize our current view of the oxidative folding of MHC class I molecules and addresses the question of how the receptor ligand interaction might be regulated by thiol-based redox reactions.  相似文献   

19.
Glycosylation of proteins is a common event and contributes to protein antigenic properties. Most data have been obtained from model studies on glycoprotens with well-defined structure or synthetic glycopeptides and their respective monoclonal antibodies. Antibodies raised against glycoprotein antigens may be specific for their carbohydrate units which are recognized irrespective of the protein carrier (carbohydrate epitopes), or in the context of the adjacent amino acid residues (glycopeptidic epitopes). Conformation or proper exposure of peptidic epitopes of glycoproteins is also frequently modulated by glycosylation due to intramolecular carbohydrate-protein interactions. The effects of glycosylation are broad: glycosylation may 'inactivate' the peptidic epitope or may be required for its reactivity with the antibody, depending on the structure of the antigenic site and antibody fine specificity. Evidence is increasing that similar effects of glycosylation pertain to T cell-dependent cellular immune responses. Glycosylated peptides can be bound and presented by MHC class I or II molecules and elicit glycopeptide-specific T cell clones. Received 5 July 2001; received after revision 9 October 2001; accepted 11 October 2001  相似文献   

20.
Legionella (L.) pneumophila, the causative agent of Legionnaires disease, is an intracellular pathogen of alveolar macrophages that resides in a compartment displaying features of endoplasmatic reticulum (ER). In this study, we show that intracellular multiplication of L. pneumophila results in a remarkable decrease in MHC class I expression by the infected monocytes. During intracellular multiplication, L. pneumophila absorbs ER-resident chaperons such as calnexin and BiP, molecules that are required for the correct formation of the MHC class I complex. Due to reduced MHC class I expression, stimulation of allogeneic blood mononuclear cells was severely inhibited by infected host cells but cytotoxicity of autologous natural killer cells against Legionella-infected monocytes was not enhanced. Thus, reduced expression of MHC class I in infected monocytes may resemble a new immune escape mechanism induced by L. pneumophila.Received 22 November 2004; received after revision 27 December 2004; accepted 5 January 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号