首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
罗维均  王世杰 《科学通报》2008,53(17):2071-2076
通过对贵州荔波凉风洞(LFD)大气降水、土壤水、土壤气、洞穴滴水以及滴水对应的现代化学沉积物氧(氢)同位素组成的系统监测, 发现LFD土壤水和滴水主要来源于当地大气降水; 3种水(大气降水、土壤水和滴水)氧同位素值的变化幅度在年内依次减小, 分别在0~-10‰, -2‰~-9‰和-6‰~-8‰之间; 3种水氧同位素值之间存在大致协调同步的季节变化规律: 雨季偏轻, 旱季偏重; 地表蒸发作用导致滴水氧同位素年算术平均值相对于大气降水值偏重约0.3‰以上. 计算结果验证了LFD系统中洞穴次生化学沉积物形成过程基本达到了氧同位素平衡, 利用洞穴沉积物氧同位素值恢复和重建古气温和降水量是可行的, 但应注意研究区地表蒸发作用对氧同位素值的调节作用.  相似文献   

2.
通过对贵州荔波凉风洞(LFD)大气降水、土壤水、土壤气、洞穴滴水以及滴水对应的现代化学沉积物氧(氢)同位素组成的系统监测,发现LFD土壤水和滴水主要来源于当地大气降水;3种水(大气降水、土壤水和滴水)氧同位素值的变化幅度在年内依次减小,分别在0~-10‰,-2‰~-9‰和-6‰~-8‰之间;3种水氧同位素值之间存在大致协调同步的季节变化规律:雨季偏轻,旱季偏重;地表蒸发作用导致滴水氧同位素年算术平均值相对于大气降水值偏重约0.3‰以上.计算结果验证了LFD系统中洞穴次生化学沉积物形成过程基本达到了氧同位素平衡,利用洞穴沉积物氧同位素值恢复和重建古气温和降水量是可行的,但应注意研究区地表蒸发作用对氧同位素值的调节作用。  相似文献   

3.
湖泊和海洋沉积物中正构烷烃氢同位素作为有潜力的古水文和古气候指标已经得到广泛应用,但是在干旱区由于蒸发强烈而严重影响正构烷烃氢同位素比值,因此其能否记录降水同位素变化受到质疑.本研究在青藏高原干旱区采集了21个湖泊表层沉积物(其中20个湖泊年平均降水量400 mm),发现其正构烷烃氢同位素(δD_(wax))与年均降水平均氢同位素(δD_(ann))呈现较强相关(r~2=0.84,P0.001),其与夏季降水平均氢同位素(δD_(sum))相关性更好(r~2=0.91,P0.001),说明降水是控制湖泊沉积物中正构烷烃氢同位素(δD_(wax))变化的主要因素,在干旱地区正构烷烃氢同位素(δD_(wax))仍然可以反映降水氢同位素(δD_p)信息.本研究中湖泊表层沉积物正构烷烃和降水之间的氢同位素表观分馏平均值(ε_(wax-p))为-113‰,较湿润地区偏正,可能是由于干旱区蒸发强烈引起.因此沉积正构烷烃氢同位素(δD_(wax))可以作为夏季降水平均氢同位素(δDp)的替代指标,记录夏季风强度和古水文变化.  相似文献   

4.
秦伯强 《科学通报》1997,42(6):626-630
<正>无论是吞吐湖还是内陆湖,在排除了构造活动、冰川消融补给和人类活动等因子之后,湖泊水位变化反映的是该地区湿润状况的变化,特别是有效降水(降水减蒸发)的变化,大气环流模型的模拟研究是从动力成因的角度研究古气候,为过去地质时期可能发生的气候变化提供尽可能正确的成因解释.因此把模型模拟与地质观测资料结合起来进行对比研究正成为古气候学研究的一个重要途径.目前基本上已经结束工作的国际合作项目COHMAP(The Co-operative Holocene Mapping Project)及正在进行的更为广泛的国际间合作项目PMIP(Paleo-climate Modeling Intercomparison Project),都是旨在通过模型模拟与地质资料相比较,从而检验模拟试验的合理性及对古气候变化提供物理解释.  相似文献   

5.
无论是吞吐湖还是内陆湖,在排除了构造活动、冰川消融补给和人类活动等因子之后,湖泊水位变化反映的是该地区湿润状况的变化,特别是有效降水(降水减蒸发)的变化,大气环流模型的模拟研究是从动力成因的角度研究古气候,为过去地质时期可能发生的气候变化提供尽可能正确的成因解释.因此把模型模拟与地质观测资料结合起来进行对比研究正成为古气候学研究的一个重要途径.目前基本上已经结束工作的国际合作项目COHMAP(The Co-operative Holocene Mapping Project)及正在进行的更为广泛的国际间合作项目PMIP(Paleo-climate Modeling Intercomparison Project),都是旨在通过模型模拟与地质资料相比较,从而检验模拟试验的合理性及对古气候变化提供物理解释.  相似文献   

6.
徐彦伟  康世昌  张玉兰  张拥军 《科学通报》2011,56(13):1042-1049
青藏高原中部和南部在夏季风期间的降水主要来自印度季风输送的水汽和高原自身蒸发的水汽. 然而, 目前两种水汽对降水的贡献率还不清楚. 夏季风期间(6~9 月), 纳木错湖区大气降水、河水中过量氘明显比纳木错以南地区降水中过量氘高, 这反映了纳木错湖水蒸发水汽与当地大气水汽的混合. 本文根据地表水体蒸发水汽对当地大气水汽贡献率的估算理论, 基于相关水体(降水、河水、大气水汽和湖水)中稳定同位素数据, 初步估算出近年夏季纳木错湖水蒸发水汽对当地大气水汽的贡献率平均约为28.4%~31.1%.  相似文献   

7.
巴丹吉林沙漠腹地降水事件后的沙山蒸发观测   总被引:3,自引:0,他引:3  
巴丹吉林沙漠腹地高大沙山和湖泊的形成机理一直是学术界研究的热点,其中关于高大沙山上大气降水能否入渗补给地下水一直存在较大争议.本文基于沙漠腹地的2年降水观测和沙漠边缘的长时间尺度降水资料,结合概率分布模型和日降水极值重现期分析,对沙漠地区的降水等级进行了划分,并利用沙漠腹地的自动气象站和涡度相关系统的观测数据,对不同等级降水事件后的沙山蒸发进行分析.结果显示,沙漠地区的降水事件可分为3类,即5 mm以下的常规降水事件CP(占总降水的90%以上)、20 mm左右的普通年份最大日降水OAM和数十年一遇的极端强降水事件EP.CP和OAM事件后,降水分别约需1~3 d和3~4周可被蒸发出地表,EP事件后水分则需较长的时间方可蒸发出地表.三类降水事件的累积蒸发与累积降水表明,高大沙山上的大气降水对地下水没有显著补给作用.本研究对深入探讨巴丹吉林沙漠腹地湖泊群的形成机理有重要价值.  相似文献   

8.
海河流域大气降水中稳定同位素的时空变化   总被引:1,自引:0,他引:1  
利用海河流域2012年7月~2013年1月7个观测站点大气降水中的δD和δ18O数据,研究了流域降水稳定同位素的时空变化特征.结果表明流域降水稳定同位素季节变化具有明显的空间差异,南部站点降水稳定同位素值季风期(7~9月)相对贫化,非季风期相对富集;而流域北部站点则相反.这种季节上的空间差异主要反映了不同水汽来源和气候要素的控制,季风期间,受海洋水汽(d8.4‰)影响,流域降水中稳定同位素值普遍较低,而非季风期间由于大陆水汽(d14.1‰)影响,其降水中同位素以高值为特征;在日和月时间尺度上,降水中稳定同位素变化在流域南部地区(除惠民站外)表现出显著的降水量效应,而在北部地区则表现为显著的温度效应.流域降水易受到云底二次蒸发的影响,特别是在季风期间,受其影响,流域大气水线的斜率和截距显著降低.  相似文献   

9.
巴丹吉林沙漠诺尔图湖泊水化学特征与补给来源   总被引:2,自引:0,他引:2  
选取巴丹吉林沙漠最大、最深的湖泊诺尔图作为研究对象,通过分析湖水和地下水八大离子、总溶解固体含量、稳定同位素18O和2H组成,地下水放射性同位素氚浓度,研究了诺尔图水平和垂直方向上湖水理化参数及同位素特征.结果表明,诺尔图湖水理化性质年际和季节变化明显大于附近地下水的变化,水平和垂直方向上湖水混合较均匀,不同深度湖水的水化学型一致,均为Na-Cl-CO3-(SO4).诺尔图湖水、地下水同位素沿着低于全球大气降水线斜率的当地蒸发线展布,较低的斜率表明研究区强烈的蒸发环境特征.湖水同位素大多位于蒸发线的右上角,地下水同位素大多位于蒸发线的左下角,结合湖水及地下水水位变化趋势,表征湖泊的主要补给来源为地下水.诺尔图钙华泉水(地下水)的年龄约为75~80 a,说明湖泊水初始补给源可能为次现代~1952年之间补给的混合或年代更老,有待进一步研究.  相似文献   

10.
全球变化背景下的温度增加和降水格局变化对植物功能性状影响的研究已有很多,但关于植物功能性状对水热协同变化的敏感性指标及适应阈值研究较少.本研究以荒漠草原典型地带性植物短花针茅为研究对象,通过人工气候箱法模拟研究了其功能性状(生物量特征和形态特征)对温度变化(对照,增温1.5℃,2.0℃,4.0℃,6.0℃)和降水变化(–30%,–15%,对照,+15%,+30%)(以1978~2007年6~8月月均温和月均降水为对照)协同作用的敏感性和适应性.结果表明:(ⅰ)温度和降水变化对短花针茅各功能性状(除地上生物量和叶数)有极显著的交互作用,生物量特征对水热协同作用的敏感程度大于形态特征,其中最敏感指标为地下生物量.(ⅱ)不同降水条件下短花针茅对温度的适应性不同,表现为总生物量与温度的关系不同,即在降水减少30%时,呈线性减少关系;在降水减少15%时,两者无显著关系;在当前降水及降水增加时,呈二次曲线关系.(ⅲ)未来轻度的气候暖干化(降水弱降低而温度小幅增加)可能有利于短花针茅的生长.  相似文献   

11.
黄河源区水文收支对近代气候变化的响应   总被引:1,自引:0,他引:1  
周德刚  黄荣辉 《科学通报》2012,(15):1345-1352
黄河源区径流在20世纪90年代以后显著减少.中国气象局台站资料显示,源区平均降水量在20世纪90年代偏低,在2002年后又偏多,近几十年来地表一直持续着快速增温和变湿,以及风速减弱.利用一个改进的陆面过程模式,模拟了1960~2006年来黄河源区及周边气象台站的水文收支,分析了气候变化对水文收支的影响.结果显示,除了降水量本身和降水强度之外,降水变化的空间配置也是影响径流对降水变化响应的一个重要因子.在20世纪90年代径流偏少是与区域平均降水量偏少及降水强度偏弱一致.在2002年以后,源区平均降水偏多,但主要增加在较干旱的区域.在此干旱的区域,蒸发主要受降水量控制,因此大部分的降水增加转化为蒸发了.相比而言,在源区较湿润的区域,能量是决定蒸发的一个更加重要的因子,尽管此区域的降水量部分增加部分减少,但由于快速增温,此区域蒸发明显增加,产流在2002年以后依然偏少.这种影响蒸发的机制和它对气候变化的响应,以及降水空间配置的变化,使得近些年来黄河源区的水文收支不利于产流.  相似文献   

12.
祁连山七一冰川积雪和大气降水中的氢氧稳定同位素变化   总被引:2,自引:0,他引:2  
报道祁连山七一冰川夏季降水和冰川表层积雪中氢氧稳定同位素的观测资料, 并分析其与气象要素的关系. 在事件尺度上, 七一冰川夏季降水中δ18O的变化不存在温度效应, 但显示出明显的降水量效应. 水汽输送过程追踪与降水及降水中稳定同位素对比研究显示, 这种降水量效应既反映了水汽来源的差异, 与季风活动相关, 也与云中水汽冷却程度、水滴在降落过程中的蒸发及和周围水汽的交换相关. 由于冬季降水极少, 积雪剖面主要体现夏、春、秋三季的降水状况. 夏季降水的δ18O值低, 而春、秋季降水的δ18O高. 夏季降水的大气水线为δD= 7.6 δ18O + 13.3, 与祁连山南麓德令哈的大气水线相近. 积雪的大气水线为δD = 10.4 δ18O + 41.4, 显示出异常高的斜率和截距. 积雪剖面的过量氘(d)值与δ18O存在明显的正相关, 说明从春到夏, 随着降水同位素比率的降低, d值降低, 反之, 从初秋至早春, d值增加, 从而导致大气水线的高斜率和高截距. d的变化指示春秋季水汽可能来源于附近的内陆蒸发或干燥的西风气流在经过相对温暖的水体时的快速蒸发, 而夏季水汽则由季风带来. 同时, 这也表明季风的影响范围可达祁连山西段.  相似文献   

13.
青藏高原南部羊卓雍错流域稳定同位素水文循环研究   总被引:3,自引:0,他引:3  
高晶  田立德  刘勇勤  巩同梁 《科学通报》2009,54(15):2153-2159
稳定同位素被广泛应用于湖相沉积中古气候重建以及区域水文循环研究. 通过分析青藏高原南部羊卓雍错流域2年的降水、河水和湖水样品测得的氧稳定同位素结果, 分析了其时空变化特征, 并通过建立该流域湖水稳定同位素循环模型, 模拟了不同环境因子对湖水中氧稳定同位素平衡过程的影响. 研究结果表明, 该流域中降水、河水和湖水δ18O具有显著的季节和年际差别, 同时, 表现出明显的“季风循环”. 季风期, 降水、河水和湖水δ18O值较低; 非季风期, 降水和湖水δ18O值较高, 河水δ18O值在春季较高. 由于蒸发分馏作用, 流域内湖水δ18O比降水δ18O和河水δ18O高约10‰. 模拟结果表明, 湖水蒸发过程对于相对湿度的变化非常敏感, 在湖面相对湿度为51%时, 湖水δ18O经过30.5年达到目前的-4.7‰水平. 湖水表层水温和补给水δ18O变化对湖水δ18O平衡影响较小.  相似文献   

14.
人造金刚石低压合成的非平衡定态相图研究   总被引:12,自引:0,他引:12  
王季陶 《科学通报》1995,40(11):1056-1056
人造金刚石能实现低压稳定的生长,同时可出现石墨的消蚀,对此无法用经典热力学来加以解释.用非平衡热力学耦合理论,可以对人造金刚石的低压合成作出明确的回答.对恒温恒压反应过程,用Gibbs自由能,(G)的变化来判断反应方向.(1)C(石墨)=C(金刚石);低压下,△G_1>0;反应自发地向左方.(2)H~*=1/2H_2,△G2<<0;反应强烈趋向于右方.反应(1)与(2)发生热力学耦合时,(3)=(1)+χ(2),C(石墨)+χH~*=χ/2 H_2+C(金刚石),只要耦合参数χ不是很小,△G_3=△G_1+χ△G_2<0;反应将趋向于右方.所以,有足够超平衡浓度  相似文献   

15.
程雪涛  王文华  梁新刚 《科学通报》2012,(16):1489-1495
(火积)是近年提出以描述热量传递能力的物理量.将(火积)的概念拓展应用于涉及做功的开口热力学过程的分析.定义了焓(火积)的概念,基于该定义发展了开口系统的(火积)平衡方程,并给出了开口热力学系统中的"(火积)损失"的概念.应用(火积)平衡方程,对空气标准循环进行了分析和讨论.研究表明,当工质吸收的热量来自燃料燃烧反应时,(火积)损失速率可以描述循环净输出功率的变化;当工质吸收的热量来自高温热流体加热时,则系统的最大(火积)损失速率和最小熵产速率均对应于循环的最大输出功率.因此,(火积)损失是一个可以描述空气标准循环性能的参数.  相似文献   

16.
本文用IPM(独立粒子模型)势讨论由于离子与固体原子随机碰撞而导致的离子能量损失和能损涨落现象。根据Bohr理论,满足Poisson统计,碰撞中各独立离子的平均能量损失为能量歧离为:其中,N为原子密度,△R为离子在固体中的路程,T_i为离子与电子作用时损失的动能,n_i为平均涨落数,d_б(T)为离子损失能量在T_i→T_i+△T_i间隔的微分截面。把固体中原子核周围各部分电子云对离子  相似文献   

17.
华北汛期降水量年代际和年际变化之间的线性关系   总被引:17,自引:5,他引:17  
陆日宇 《科学通报》2003,48(7):718-722
华北地区汛期(7月和8月)降水量的变化具有明显的年代际和年际两种时间尺度. 在年代际时间尺度上, 华北降水在20世纪70年代末发生突然减少. 研究了降水突然减少对应的大气环流变化以及对降水年际变化产生的影响, 发现年代际变化所提供的背景对华北降水年际变化的规律和物理机制没有影响, 华北汛期降水年代际和年际变化之间的关系是线性的.  相似文献   

18.
降水形态的变化可以影响地表的温度和反照率,对下垫面物质和能量平衡、陆地水文及生态系统均产生极大影响.基于美国阿拉斯加8站和加拿大11站日平均气温和固态、液态降水资料拟合的固-液态降水临界气温,辨析了1961~2010年环北极地区253个站点的降水形态时空变化特征.结果表明:60°N以北地区,降雨量占总降水量的比值(rainfall to total precipitation ratio,RPR)随纬度升高而减小.RPR气候平均态在夏季最高,秋季、春季次之,冬季最小.在不同季节,RPR变化趋势存在明显的区域差异.在春季,RPR变化趋势较为一致,在北极大部分地区(82.46%站点)呈增加趋势,且有22.37%站点通过显著性检验,表明北极大部分地区春季降水在过去50多年间呈现由固态向液态转变的趋势.使用95%置信区间上限和下限临界温度对降水形态进行划分和趋势分析,其结果与使用最优解的计算结果一致.在北极冰雪开始消融的春夏季节转换期(3~7月),阿拉斯加、中西伯利亚和北欧部分地区存在明显的固态降水向液态降水转变的趋势,这一趋势可能正在对北极地-气相互作用施加着影响.  相似文献   

19.
李庆祥 《科学通报》2020,65(21):2266-2278
利用多元线性回归模型拟合历史气候变化经常会遇到残差自相关以及影响因子之间存在多重相关性的问题,从而导致模型出现病态.本研究利用多个自然强迫、人为活动因子的辐射强迫(有效辐射强迫)作为自变量,采用较为简单的组合统计模型将近百年陆地降水变化分解为自然强迫、人为活动的影响和内部变率(噪声),取得了较为合理的结论.首先采用多元线性回归(MLR)+差分滑动平均自回归(ARIMA)组合模型对全球及各纬度带陆地降水距平变化序列中人类活动和自然强迫因子的重要性进行了分析,发现全球和北半球中、高纬度陆地降水的模型解释方差较高(超过40%),且方程中人类活动因子的拟合系数具有高显著性,说明人类活动对这些区域降水变化具有显著贡献.进一步,利用偏最小二乘回归(PLSR)模型,量化了人为强迫多个分量对上述降水变化的各自影响(贡献),结果表明:火山爆发和多数人为因子对全球陆地降水的距平变化非常重要;只有人为气溶胶、尾迹卷云对于北半球中纬度、高纬度陆地降水距平变化一致性地表现为正贡献,而其他人为因子对不同纬度带的贡献是相反的,体现出一定的不确定性.  相似文献   

20.
通过分析更尕海轮藻碳酸盐结壳、软体动物壳体等碳氧同位素的季节变化,结合湖水溶解无机碳(DIC)碳同位素(δ13CDIC)和湖水氧同位素(δ18OLake),探讨其与现代湖泊水体环境的关系.结果表明,5~8月,轮藻植物生长速率约为5~6 cm/月;期间,沉水植物强烈的光合作用和碳酸盐的析出导致湖水pH升高,同时湖水DIC和Ca2+含量显著下降.结合流域水体氧同位素、气温和降水量等观测资料,指出更尕海湖泊水位季节变化是区域降水量与蒸发作用平衡的结果;湖水氧同位素组成主要受入湖水氧同位素组成、湖泊内蒸发过程和降水量等的影响.软体动物壳体氧、碳同位素组成可分别代表δ18OLake与δ13CDIC的年际变化.然而,轮藻结壳氧同位素与δ18OLake之间非平衡分馏效应显著,有待于进一步开展工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号