首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

2.
Summary In biotin-deficient rats, a decreased intestinal transport of Na+, H2O and L-phenylalanine, and no transport differences of 3-O-methyl-D-glucose were observed. The lower Na+ and L-phenylalanine transport appears to be referable to a decreased energy availability and probably not to the lack of a carrier.  相似文献   

3.
Intracellular pH (pHi) is a major regulator of various and critical cellular functions. A close regulation of pHi is thus mandatory to maintain normal cellular activity. To this end, all cells express ion transporters that carry across their plasma membrane H+ or equivalent H+ into and out of the cell. Besides pHi, these ion transporters are under the regulation of neurohormonal stimuli. This review summarises the molecular identity, regulation and function of the main membrane pH-regulatory ion transporters. Received 30 December 1998; received after revision 4 February 1999; accepted 9 February 1999  相似文献   

4.
Summary In the isolated urinary bladder of the toad, 10–5–10–4M orthovanadate produces inhibition of the active transport of Na+ and H+ ions as well as of antidiuretic hormone-mediated osmotic flow of water. Since transport of H+ ions and osmotic water flow are not inhibited when (Na++K+)-ATPase is inhibited by ouabain, biological actions of vanadate are not necessarily related to inhibition of (Na++K+)-ATPase.This research was supported by grant AM-14915 from the National Institutes of Helath.  相似文献   

5.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   

6.
Summary The O2– and Ca2+-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e and also oxygen radicals or recox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised condition, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2+-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2+-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

7.
The vault complex   总被引:2,自引:0,他引:2  
Vaults are large ribonucleoprotein particles found in eukaryotic cells. They are composed of multiple copies of a M r 100,000 major vault protein and two minor vault proteins of M r 193,000 and 240,000, as well as small untranslated RNAs of 86–141 bases. The vault components are arranged into a highly characteristic hollow barrel-like structure of 35 × 65 nm in size. Vaults are predominantly localized in the cytoplasm where they may associate with cytoskeletal elements. A small fraction of vaults are found to be associated with the nucleus. As of yet, the precise cellular function of the vault complex is unknown. However, their distinct morphology and intracellular distribution suggest a role in intracellular transport processes. Here we review the current knowledge on the vault complex, its structure, components and possible functions.Received 23 January 2003; received after revision 13 March 2003; accepted 26 March 2003  相似文献   

8.
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.  相似文献   

9.
Summary Cu2+-complexes with different monodentate ligands PYR, e.g. pyridine, 2,4,6-collidine and imidazole, catalyse the oxidation ofo-phenylenediamine (H2B) to 3,5-dihydro-2-amino-3-iminophenazine (PHEN) by O2. Investigation of the electron paramagnetic resonance during reaction gives interesting details on the function of Cu2+ as a catalyser. The formation of mixed complexes (H2B)Cu2+(PYR) and its influence on the reaction rated[PHEN]/dt is demonstrated. In the ratedetermining reaction, Cu2+ is reduced to Cu+, which is reoxidized by O2. During reaction the ratio [Cu2+]/[Cu+] is determined by means of e.p.r. measurements.  相似文献   

10.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

11.
In the few years since their discovery, T helper 17 cells (TH17) have been shown to play an important role in host defense against infections, and in tissue inflammation during autoimmunity. TH17 cells produce IL-17, IL-21, IL-10, and IL-22 cytokines, and thus have broad effects on a variety of tissues. Notably, the requirement for the immunosuppressive cytokine TGF-β along with the pro-inflammatory cytokine IL-6 for TH17 differentiation supports the intimate relationship between the TH17 subset and FOXP3+ regulatory T cells. Here, we discuss current knowledge on effector functions and differentiation of the TH17 lineage. Furthermore, we now know of a physiological stimulus for TH17 differentiation: innate immune recognition of cells undergoing apoptosis as a direct result of infection induces unique development of this subset. As our knowledge of TH17 and T regulatory cells grows, we are building on a new framework for the understanding of effector T cell differentiation and the biology of CD4+ T cell adaptive immune responses.  相似文献   

12.
The mechanisms of HCO 3 and Cl transport across basolateral membranes from rat ileum were investigated in isolated vesicles by means of uptake experiments. Neither Cl/HCO 3 exchanger nor Na+–(HCO 3 )n cotransport seem to be present in ileal basolateral membranes. Moreover Cl uptake is unaffected bycis Na+ and/or K+ gradients, indicating the absence of Na+–Cl, K+–Cl and Na+–K+–2Cl symport activity. An electrically conductive pathway seems to be responsible for both HCO 3 and Cl fluxes. Evidence is also given for the presence of a Na+/H+ exchanger at the basolateral pole of ileal enterocytes.  相似文献   

13.
Summary The distribution of acid deposition by atmospheric precipitation in the Federal Republic of Germany is discussed, based on investigations of the wet H+-deposition during the five years 1980–1984, using a network of 16 automated samplers of our own construction located in various categories of ecosystems. Analytical problems of sampling and the electrometric determination of pH in rainwater are briefly discussed. Results for the average amounts of precipitation, the average H+-concentrations and average H+-depositions in the 16 typical regions of the Federal Republic of Germany are compared and the influences of meteorological parameters are discussed. An increase of the H+-concentration and H+-deposition values has been observed from 1980 onwards with a maximum in 1981 and a slow decrease in the next two years. The comparison of the values found for rural regions with those for more significantly polluted regions shows that in the latter regions the removal of H+-ions by wash-out is more effective. Whereas in the Ruhr region the pH is shifted to more acid values, due to the wash-out of acid particles and aerosols, in regions with metallurgical industry the pH is shifted to more alkaline values due to the wash-out of alkaline particles. In general the free acid in rain and snow is rather uniformly distributed over the whole area as a result of mesoscalic transport of the acid precursors SO2 and NOx and the concomitant formation of acid in the cloud droplets leading to acid deposition by rain-out. The composition of rainwater and the possibility of determining the proportion of the acid anions in rain which are of anthropogenic origin is briefly discussed.Deseased (May 12th, 1985).  相似文献   

14.
The human α2-plasmin inhibitor (A2PI) possesses unique N- and C-terminal extensions that significantly influence its biological activities. The C-terminal segment, A2PIC (Asn398-Lys452), contains six lysines thought to be involved in the binding to lysine-binding sites in the kringle domains of human plasminogen, of which four (Lys422, Lys429, Lys436, Lys452) are completely and two (Lys406, Lys415) are partially conserved. Multiple Lys to Ala mutants of A2PIC were expressed in Escherichia coli and used in intrinsic fluorescence titrations with kringle domains K1, K4, K4 + 5, and K1 + 2 + 3 of human plasminogen. We were able to identify the C-terminal Lys452 as the main binding partner in recombinant A2PIC (rA2PIC) constructs with isolated kringles. We could show a cooperative, zipper-like enhancement of the interaction between C-terminal Lys452 and internal Lys436 of rA2PIC and isolated K1 + 2 + 3, whereas the other internal lysine residues contribute only to a minor extent to the binding process. Sulfated Tyr445 in the unique C-terminal segment revealed no influence on the binding affinity to kringle domains.  相似文献   

15.
The cellular prion glycoprotein (PrPC) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrPC is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP−/− thymocytes display a higher susceptibility to H2O2 exposure than PrP+/+ cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP−/− thymocytes are more sensitive to oxidative stress. PrPC function appears to be specific for oxidative stress, since no significant differences are observed between PrP−/− and PrP+/+ mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrPC a protective function in thymocytes against oxidative stress.  相似文献   

16.
The three isoforms of the adaptor protein Shc play diverse roles in cell signalling. For example, the observation of p46 Shc in the nuclei of hepatocellular carcinoma cells suggests a function quite distinct from the better characterised cytoplasmic role. Ligands responsible for the transport of various Shc isoforms into organelles such as the nucleus have yet to be reported. To identify such ligands a far western approach was used to determine the p52 Shc interactome. The Ran-GTPase nuclear transport protein was identified and found to bind to p52 Shc in vitro with low micromolar affinity. Co-immunoprecipitation, pull down and fluorescence lifetime imaging microscopy experiments in stable cells confirmed cellular interaction and nuclear localisation. The nuclear transport factor protein NTF2, which functions in cohort with Ran, was shown to form a complex with both RAN and Shc, suggesting a mechanism for Shc entry into the nucleus as part of a tertiary complex. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 20 October 2008; received after revision 04 December 2008; accepted 15 December 2008  相似文献   

17.
Summary Superoxide dismutase, catalase and methional proved capable of inhibiting the microsomal oxidation of thiobenzamide, which is most probably catalyzed by the flavin-containing monooxygenase. This indicates that excited oxygen species (e. g.·O 2 , H2O2, ·OH) are involved in the catalytic cycle of this enzymatic reaction. CO, which inhibits the cytochrome P-450-dependent oxygen radical formation, had no effect on the oxidation reaction, suggesting that the source of the reactive oxygen species is not the microsomal mixed-function oxidase.  相似文献   

18.
Summary Intracellular potentials in the cells from 17.5-day old rat visceral yolk sacs were measured by a glass microelectrode. When penetrated from the maternal side, the cells have potentials of about 50.2±1.9 mV (inside negative) which were reduced by increasing the external K+ concentration and increased by removing Na+ ions from the bathing fluid. Triaminopyrimidine (TAP) which inhibited Na+ transport caused a dose-dependent depolarization of the cell membrane. The depolarization was dependent on the presence of extracellular Ca2+ ions. It is proposed that TAP may inhibit Na+ transport by increasing the intracellular concentration of calcium ions.This work was supported by the University of Hong Kong (grant number 335. 034.5105).Acknowledgment. Triaminopyrimidine was synthesized by Dr. Barbara Roth of the Wellcome Research Laboratories.  相似文献   

19.
Summary A synthetic ion exchanger containingR-PO(OH)2 as active groups was shown to retain histamine and other basic substances selectively and, in most cases, with marked preference over the other cations (Na+, H+) present in the system. The results are taken to indicate that similar exchange reactions may occur on biogenic polyelectrolytes bearing similar active groups.  相似文献   

20.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号