首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于有向图的关联规则算法   总被引:5,自引:0,他引:5  
提出了一种基于有向图的关联规则挖掘算法,采用了垂直二进制位图映射数据库,根据垂直二进制位图来生成有向图,将频繁项的二进制位串作为有向图的权值,通过分析有向图生成最大频繁项集,并给出了最大频繁项集挖掘算法的优势。  相似文献   

2.
基于有向图的关联规则算法   总被引:2,自引:0,他引:2  
提出了一种基于有向图的关联规则挖掘算法,采用了垂直二进制位图映射数据库,根据垂直二进制位图来生成有向图,将频繁项的二进制位串作为有向图的权值,通过分析有向图生成最大频繁项集,并给出了最大频繁项集挖掘算法的优势。  相似文献   

3.
关联规则挖掘算法研究   总被引:1,自引:0,他引:1  
详细研究了关联规则数据挖掘,分析了存在的问题和不足,提出了一种频繁项集增量算法,用于对Apriori算法进行改进.实验表明,改进算法在运行效率上要比Apriori算法快一个数量级.  相似文献   

4.
提出了基于数组的关联规则挖掘算法,该算法只扫描一次数据库,将数据库中的数据存于数组中,提高了内存的利用效率,同时也提高了算法效率.  相似文献   

5.
快速关联规则挖掘算法   总被引:1,自引:0,他引:1  
刘景春 《佳木斯大学学报》2004,22(2):151-156,177
提出了一种新颖的关联规则挖掘算法QAIS,与经典两阶段式关联规则挖掘算法不同的是,它只需扫描一遍事务数据库,不需要生成候选集,并且可以方便的应用在增量式关联规则挖掘算法中,该算法经合成数据验证是有效的.同时针对关联规则生成过程中出现大量冗余规则的问题,还讨论了冗余关联规则去除的问题.  相似文献   

6.
关联规则挖掘研究综述   总被引:6,自引:0,他引:6  
介绍了关联规则挖掘的一般概念,并对一些典型算法进行了介绍,展望了关联规则挖掘的未来研究方向.  相似文献   

7.
传统的正关联规则主要考虑事务中所列举的项目,负关联规则不仅要考虑事务中所包含的项目,还要考虑事务中所不包含的项目,它包含了非常有价值的信息。本文对负关联规则的相关定义、支持度及置信度的计算方法进行了分析讨论,并讨论了对负关联规则挖掘中出现的矛盾规则问题及利用规则相关性解决矛盾规则问题,最后给出了其挖掘算法及其实现。  相似文献   

8.
从大型事务数据库中发现关联规则是数据挖掘中的一个重要课题,其核心问题是挖掘频繁项集.经典Apriori算法是有效的挖掘频繁项目集的算法.在分析Apriori算法的基础上,提出了一种利用二维数组来代替算法中的哈希树的方法,可以迅速产生二阶频繁项目集,改善了Apriori算法的效率瓶颈,大大提高了算法的执行效率.  相似文献   

9.
为了更好地观察国内A股间的联动性,针对股票效应的滞后性问题,提出了一种基于时序的改进关联规则挖掘算法Gap-Apriori.实验采用Apriori、FP-growth、Eclat、Gap-Apriori 4种关联规则挖掘算法,对我国2007年到2021年间的A股交易数据进行了关联分析.实验结果表明,Apriori算法较其他3种算法更适用于高维股票数据挖掘,改进算法Gap-Apriori能够分析任意周期内的股票联动状态,有效地提高了算法的运行效率.  相似文献   

10.
徐伟伟 《科技信息》2007,(19):80-80,64
数据挖掘是近年来出现的一种综合机器学习、统计学、数据库等众多领域的新技术,而关联规则是数据挖掘的核心技术。本文通过对关联规则挖掘算法的分析,给出了优化思想,最后展望了关联规则挖掘的未来方向。  相似文献   

11.
频繁模式挖掘中基于FP-growth的算法需要扫描两次事务数据库,预先给定支持度,且不支持时间敏感型数据。本文提出了一种基于频繁模式有向无环图的数据流频繁模式挖掘算法,它根据事务到来的时间给每个事务一个序号,每个事务中的数据项在存储前按数据项的顺序进行调整,频繁模式有向无环图的构建遵循这个顺序并用序号来记录事务与数据项的包含关系,模式增长过程只需要增加有向边上的序号。通过逆向遍历带有相同序号的有向边,产生条件模式基,根据动态定义的阈值抽取条件模式基信息,一次扫描数据库得到频繁模式。实验结果表明,本文算法的执行效率优于FP-growth算法,且存储节点的数目明显减少。  相似文献   

12.
基于候选最大频繁项目集的关联规则挖掘算法   总被引:3,自引:0,他引:3  
提高频繁项目集算法的效率是关联规则挖掘研究的一个重点领域 ,就此提出了基于候选最大频繁项目集的关联规则挖掘算法 ,通过实例说明了算法的执行过程 ,并与FP -Tree等其他算法作了比较  相似文献   

13.
在分析类Apriori算法存在效率瓶颈的基础上,提出了一个高效改进算法——基于分类树的关联规则挖掘算法.该算法只需要两次访问数据库,把数据库中的数据利用分类树来存储,减少了访问数据库的次数;并且由分类树的全部或部分来求得频繁项目集,减少了求频繁项目集的比较次数.此算法通过结合Apriori和FP—tree两种算法来提高挖掘效率,降低了挖掘算法的时间复杂度和空间复杂度.通过多次试验证明该算法比Apriori及其改良算法的挖掘效率高2到8倍.  相似文献   

14.
关联规则挖掘是数据挖掘的主要技术之一,现有的关联规则挖掘算法均基于支持度-置信度框架,当用户调整阈值时存在多次遍历数据库和重复计算问题。该文针对支持度阈值变化时的关联规则维护问题,提出了关联规则交互挖掘算法HIUA,该算法改进了原始IUA算法的剪枝过程,并通过Hash结构提高算法运行效率。在UCI数据集及企业实际财务数据集中的实验结果表明:在支持度阈值发生变化的过程中HIUA算法进一步利用已有挖掘结果,有效提高了关联规则挖掘的效率。  相似文献   

15.
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.  相似文献   

16.
提出了一种快速关联规则挖掘算法DPD,算法通过模式分解,在每次遍在中减小模式量和模式长度,动态地减小数据集大小,从而有效减少候选关联规则的产生和计数的费用,提出了基于频繁集lk生成最长项目子集M(k)的FPS算法,DPD算法利用了M(k)进行模式分解,有效克服PD算法在|-Lk|很大时模式分解效率低的缺点,减少由Ck生成Ck 1时的遍历次数。  相似文献   

17.
针对经典关联规则在解决与其他应用领域相关的概念、完备频繁项目集和高效算法的定义等问题上的缺陷,提出了一种关联规则算法,在文档智能查询的应用问题上,此算法有效地解决了这些问题,实验表明此关联规则算法在文档智能查询项目中,得到了良好的应用效果.  相似文献   

18.
分析了经典关联规则挖掘及相关的隐私保护等问题,同时研究了多关系关联规则的刻画和挖掘问题.通过重新定义查询模式,改进了Warmr方法,使查询模式支持“频繁查询模式的子模式也必然是频繁的“这种Apriori特性,进而将其移植到多关系规则的挖掘过程,从而加快规则的挖掘.研究了有针对性的敏感规则的挖掘方法,通过挖掘包含敏感信息的所有频繁查询模式,从中导出所有能够导致信息泄露的敏感规则;为了平衡数据可用性和安全性之间的矛盾,通过隐藏所有敏感规则中公共关系的元组,在保证规则隐藏和数据安全的同时,降低了对数据可用性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号