共查询到15条相似文献,搜索用时 62 毫秒
1.
一种基于简化PCNN的红外图像分割方法 总被引:1,自引:2,他引:1
提出一种基于简化脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的红外图像分割新方法.针对红外航拍图像所具有的噪声大、灰度范围较窄以及具有对比度反转现象等特征,从原始图像与分割图像的相似性出发,采用最大互相关匹配来确定PCNN的最优参数,最终完成图像分割.实验结果验证了该方法的有效性. 相似文献
2.
图像分割是模式识别和计算机视觉中的一个经典问题。近年来出现了很多图像分割新技术,其中基于脉冲耦合神经网络(PCNN)的图像分割技术由于它源于猫的大脑视觉皮层上的同步脉冲发放现象最为引人注目。本文对PCNN图像分割技术进行了全面的介绍。 相似文献
3.
研究了基于PCNN的人脸图像分割算法。利用简化型PCNN对人脸图像进行分割,根据人脸图像的灰度特征和空间信息的相关性,得到了人脸图像的神经元点火序列,该点火序列就是图像分割的结果。通过MATLAB仿真实现了该算法,表明该算法具有一定的工程价值。 相似文献
4.
一种自适应PCNN图像融合方法 总被引:1,自引:0,他引:1
提出一种以图像局部方差和均值作为脉冲耦合神经网络(PCNN)参数自动调整的融合方法,并与多种金字塔融合算法、主成分分析融合方法、小波变换等图像融合算法进行比较.研究结果表明:所提出的融合方法无论是主观视觉效果还是客观评价结果均具有一定的优势,这对于拓宽PCNN的理论研究和实际应用具有一定价值. 相似文献
5.
基于PCNN的图像二值化及分割评价方法 总被引:3,自引:0,他引:3
针对目前图像二值化方法通用性不强、自适应阈值选取难,以及单一图像分割评价缺乏可靠性的问题,对基于脉冲耦合神经网络(PCNN)的图像二值化方法及其参数选择进行了研究,提出了一种综合考虑多种评价准则的用于评价图像分割效果的方法.实验结果表明:基于PCNN的二值化方法非常适合于各类图像的分割,具有分割精度高的特点;与单一评价方法相比,文中的综合评价方法能够更加客观准确地反映分割方法的分割效果. 相似文献
6.
提出了一种新的基于非下采样轮廓波(NSCT)和脉冲耦合神经网络(PCNN)相结合的自适应图像融合方法.对已经配准的源图像进行NSCT分解,得到低频子带系数和不同方向的高频子带系数.对NSCT分解的低频部分采用简单的加权平均融合规则;而高通子带系数,采用改进的拉普拉斯能量作为PCNN链接强度的方法.最后,对融合的系数进行NSCT逆变换得到融合图像.实验结果表明,本文算法明显优于其他几种方法,具有更好的融合性能,清晰度更高,是一种可行、有效的图像融合方法. 相似文献
7.
基于二维Tsallis熵的改进PCNN图像分割 总被引:8,自引:1,他引:8
为了改善图像分割的性能,采用改进的脉冲耦合神经网络(PCNN)进行分割,通过对其内部活动项进行空不变的单阈值化分割,来达到对原图像空变阈值化分割效果.另外分割准则也作了修正,通过计算图像二维直方图的Tsallis熵,得到二维Tsallis熵,以此作为图像分割准则.最后,修正了动态门限项的下降速度,使得PCNN收敛更快.实验证明二维Tsallis熵准则优于最大Shannon熵准则与最小交叉熵准则,且改进的PCNN模型比传统PCNN模型收敛更快. 相似文献
8.
运动车辆图像中车牌具有所占比例小、位置不固定和大小不一的特点,因此,对车辆图像分割时车牌区域容易产生过分割与欠分割问题.脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)被誉为"第三代神经网络"并广泛应用于图像分割.在利用PCNN模拟人类视觉的图像分割过程中,由于传统PCNN模型中的连接矩阵使用固定值表示,使得PCNN模型不能满足图像分割时尺度变化的需求.为了解决这个问题,本文提出了基于多尺度空间PCNN模型的车辆图像分割算法,将尺度空间引入PCNN模型,使PCNN模型具有了尺度特性,提高了系统自适应分割车牌图像的能力. 相似文献
9.
一种基于自适应阈值的图像分割算法 总被引:33,自引:0,他引:33
为提高目标检测概率,针对复杂的地面目标红外亚图像,提出了一种以最大类间方差法为基础的自适应阈值图像分割方法。用分割出的目标和背景区域的灰度统计量,设计了一个判断是否得到正确分割的准则.理论分析和实验结果表明,对于复杂背景下低对比度、低信噪比的地面目标,不论目标在图像中所占面积大小,利用该方法均可得到正确的分割结果.通过设置阈值运算的灰度取值范围,可大大减少计算量,节省处理时间. 相似文献
10.
基于神经网络的自适应图像分割 总被引:1,自引:0,他引:1
非均匀光照条件下的图像目标难以用阈值选取方法分割,本文使用神经网络建立自适应阈值曲面,以此作为图像分割的依据.自适应阈值曲面由图像中具有高Laplace值的边缘拟合而成,拟合过程由神经网络实现.计算机摸拟证实了此设想的可行性以及相对阈值分割方法的优越性. 相似文献
11.
基于Chan-Vese算法的自适应分等级分割方法 总被引:1,自引:0,他引:1
针对多目标物体图像的分割问题,在Chan-Vese多相分割模型的基础上,结合分等级分割的概念,提出自适应分等级分割方法,在每一阶段分割之前能够先根据图像中的物体数量判断出所需要的Level Set函数的个数,再进行分割工作.实验结果表明,自适应分等级分割方法不仅消除了多相分割模型对初始化曲线位置敏感的不足,而且能够充分利用每一个Level Set函数,减少分割步骤,并且能提高弱边界的提取精度,是一种有效且稳定的方法,能够产生光滑、准确的分割结果. 相似文献
12.
在基于脉冲耦合神经网络(PCNN)模型中,讨论了模型中阈值θ、链接权ω和迭代次数量N等参数的求解方法;采用最大熵值及PCNN模型对生物细胞图像进行了分割,并分析了各参数对图像分割质量的影响.实验结果表明,分割图像熵值越大,分割图像总体效果越好. 相似文献
13.
基于PCNN的图像直方图均衡化增强 总被引:2,自引:0,他引:2
为了更好地增强图像,提出一种新的图像增强方法.处理分为2个阶段,首先局部增强阶段,利用PCNN模拟空间掩盖效应去除了人眼无法察觉的双边缘,同时在神经元模型中引入侧抑制来模拟Mach带效应,使边缘处灰度差值更大,平滑区域灰度差值更小.其次全局增强阶段,将灰度信息与空间信息耦合到神经元的内部活动项,将阈值设置为局部增强后的图像直方图的累加密度函数,通过比较内部活动项与累加密度函数,得到最终的增强图像.理论与实验均证明了最终图像满足直方图均衡化的要求,不仅对灰度层损失问题免疫,而且直方图近似均衡. 相似文献
14.
针对医学图像融合存在伪影、边缘保持性弱等问题,提出了一种参数自适应的脉冲耦合神经网络(pulse coupled neural network,PCNN)图像融合方法。首先,对源图像通过非下采样Contourlet变换(non-subsampled contourlet transform,NSCT)得到一个低通子带和多个尺度多个方向下的带通子带。然后用区域标准差调整连接范围,进而调整突触权重矩阵以及加权系数;用各子带的改进空间频率中方向特征最显著的分量调整连接强度;对于外部激励,低通子带用区域能量和区域方差的线性组合计算,带通方向子带采用改进的拉普拉斯能量和计算。点火映射图的判决遵循取大原则。最后,通过NSCT逆变换得到融合结果图。实验结果表明,此算法能更多地保留源图像的信息,边缘保持能力更强,融合图像对比度高,视觉效果更佳,适用于多种模态医学图像之间的融合。 相似文献
15.
基于PCNN的图像二值化及分割评价研究 总被引:1,自引:0,他引:1
马义德;苏茂君;陈锐 《华南理工大学学报(自然科学版)》2009,37(5)
在介绍传统二值化方法的基础上,对PCNN脉冲耦合神经网络进行了研究,由于PCNN独特的相似神经元同步点火的特性,使其非常适合于各类图像的分割;同时结合图象二值化研究,对目前仍处于难点的图像分割评价作了研究,提出了综合评价思想。并通过实验仿真验证了:PCNN用于图像二值化,能够更好地区分和合理地分割出图像的目标和背景区域,具有分割精度高,适应类型广的特点;同时通过大量的实验数据也验证了所提出的综合评价思想的合理性,较之以往的评价准则更加准确和科学。 相似文献