首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 953 毫秒
1.
以丙烯酰胺(AM)、丙烯酸(AA)单体为原料,采用复合引发体系,通过水溶液聚合,制备出了特高分子量聚丙烯酰胺.研究了聚合体系的pH值、催化剂、链转移剂和氧化还原引发体系对聚丙烯酰胺分子量与溶解性能的影响.并通过正交实验得出了最佳工艺条件.当pH值为6.8,催化剂用量为0.05%,链转移剂为0.01%,引发剂用量为0.4%,在此条件下合成得到的聚合产品分子量高达8 900万,产品溶解性能好,20 min内可以完全溶解.  相似文献   

2.
反相悬浮聚合法合成超高分子量聚丙烯酸钠   总被引:7,自引:0,他引:7  
以丙烯酸钠和丙烯酰胺为单体,采用反相悬浮聚合法制备了超高分子量的聚丙烯酸钠(NaPA).研究了引发剂浓度、抗交联剂及其他助剂对合成产物聚丙烯酸钠性能的影响.结果表明,(NH4)2S2O8的最佳用量是0.15%(质量分数);随着CO(NH2)2用量的增加分子量提高明显;在聚合体系中加入甲基丙烯酸N,N-二甲氨基乙酯(DMAEMA)可提高分子量但用量应控制在9.4×10-4%~15.6×10-4%之间.同时用抗交联剂防止交联反应,结合使用醋酸钠和异丙醇这两种分子量调节剂不仅能提高分子量而且溶解性也得到改善.最终得到了分子量高达3.0×107的产物,其分子量和溶解性能较前人研究成果有明显提高.  相似文献   

3.
两性聚电解质型高吸水树脂的合成及溶胀性能研究   总被引:1,自引:0,他引:1  
用溴己烷和甲基丙烯酸二甲胺基乙酯(DMAEA)合成N,N'-二甲基,N-己基甲基丙烯酰氧乙基溴化铵(DMAEA-HB),再采用这种含有烯丙基结构的不饱和季铵盐、丙烯酸(AA)和丙烯酰胺(AM)为原料,以过硫酸钾-亚硫酸氢钠(K2S2O8-NaHSO3)为引发体系,采用反相悬浮聚合法合成含有阴阳离子的两性聚电解质高吸水树脂(SAP),讨论了引发剂、交联剂、丙烯酸、丙烯酰胺、季铵盐用量、外部溶液pH值等因素对树脂吸液性能的影响.结果表明:在丙烯酸/丙烯酰胺(摩尔比)为1:1,季铵盐含量为2%,丙烯酸中和度为75%,交联剂用量为0.01×10-2(占单体的摩尔比),引发剂用量为1.00×10-3(K2S2O8/NaHSO3=1/1.1),反应温度为74℃的条件下,制得的SAP吸去离子水可达1 440g/g,吸0.9%的NaCl溶液为118g/g.与一般聚电解质高分子相比,两性聚电解质型吸水树脂的吸水率受外部溶液pH值的影响更为敏感.  相似文献   

4.
丙烯酸-丙烯酸钠共聚合成高吸水性树脂的研究   总被引:7,自引:1,他引:6  
采用反相悬浮聚合法合成丙烯酸丙烯酸钠高吸水性树脂。研究了反应单体浓度、丙烯酸中和度、交联剂、引发剂及反应温度对反相悬浮聚合产物性能的影响,为选择最佳配方和工艺条件提供了依据。  相似文献   

5.
采用反相浮聚合法合成丙烯酸-丙烯酸钠高吸水性树脂。研究了反应单体浓度,丙烯酸中和度,交联剂,引发剂及反应温度对反应悬浮聚合产物性能的影响,为选择最佳配方和工艺条件提供了依据。  相似文献   

6.
高吸水性树脂由于在农业、生理卫生和化学工业等领域的广泛用途近来得到广泛的观注.本文以丙烯酸和丙烯酰胺为共聚单体,N,N'-亚甲基双丙烯酰胺为交联剂,Span-60为悬浮稳定剂,采用反相悬浮聚合法合成了聚(丙烯酸钠-丙烯酰胺)高吸水树脂.探讨了交联剂浓度、悬浮稳定剂浓度、中和度和不同单体配比等对树脂吸液率的影响,以及树脂的吸液速率.结果表明,合成得到的高吸水树脂对去离子水、0.9%生理盐水和人工血液的吸收率分别达到1100g/g、90g/g和75g/g.  相似文献   

7.
采用反相悬浮聚合法合成丙烯酸-丙烯酰胺高吸水性树脂.通过正交实验研究了反应单体浓度、丙烯酸中和度、交联剂、引发剂及反应温度对反相悬浮聚合产物性能的影响。  相似文献   

8.
聚丙烯酰胺反相悬浮聚合的研究   总被引:3,自引:0,他引:3  
以丙烯酰胺为单体、N,N′,-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂、环己烷为分散介质、Span—80为分散稳定剂,采用反相悬浮聚合后期滴加单体和共沸脱水法合成了平均粒径大约为110μm的聚丙烯酰胺(PAM)吸水微球,并系统地研究了分散稳定剂、引发剂的用量及搅拌转速对聚合产物(PAM)稳定性和粒径大小的影响.所得产物采用红外和扫描电镜进行了分析表征.  相似文献   

9.
超高吸水性树脂的合成研究   总被引:1,自引:0,他引:1  
采用丙烯酰胺与丙烯酸 (钠 )共聚体系 ,以过硫酸胺 (NH4) 2 S2 O8为引发剂 ,N ,N—双亚甲基丙烯酰胺为交联剂 ,得到轻度交联的高分子化合物 ,用聚乙烯醇改善其三级结构 ,制得超高吸水剂 ,吸收含 0 .9%的NaCl盐水达自身重量的近百倍 .  相似文献   

10.
DMAPMA阳离子聚丙烯酰胺合成工艺研究   总被引:1,自引:0,他引:1  
丙烯酰胺(AM)类聚合物是指丙烯酰胺的均聚物及丙烯酰胺与其它单体形成的共聚物的统称,聚丙烯酰胺(PAM)及其衍生物是一类新型的高分子产品,是水溶性聚电解质中最重要的品种之一.本文以丙烯酰胺(AM)和二甲胺基丙基甲基丙烯酰胺(DMAPMA)作为共聚单体,采用(NH4)2S2O8-NAHSO3组成的氧化还原体系作为引发剂引发AM与DMAPMA共聚合反应,合成分子量较高的阳离子聚丙烯酰胺.  相似文献   

11.
阳离子型聚丙烯酰胺絮凝剂的合成及表征   总被引:5,自引:1,他引:4  
系统研究了丙烯酰胺(AM)与二甲基二烯丙基氯化铵(DMDAAC)共聚反应制备阳离子絮凝剂的工艺条件。对聚合温度、引发剂浓度、单体质量分数等对合成目标产物的影响进行了详细探索,并对聚合产物的结构和热行为进行了表征。结果表明,最佳聚合条件为聚合温度55 ℃,过硫酸铵与甲醛次硫酸氢钠(质量比为7:3)总质量分数0.0125%,偶氮二异丁脒盐酸盐(V-50)的质量分数0.0125%,单体质量分数35%,阳离子度35%;在最佳工艺条件下,所得阳离子聚丙烯酰胺絮凝剂(CPAM)的分子量为2.5×106,具有良好的絮凝效果。  相似文献   

12.
反相悬浮法合成超高分子量AM/AA/AMPS及盐的共聚物   总被引:3,自引:1,他引:3  
以丙烯酰胺(AM)、丙烯酸(AA)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,采用反相悬浮聚合法制备了超高分子量的AM/AA/AMPS及盐的共聚物。本实验固定丙烯酰胺的加入量,研究了中和度、2-丙烯酰胺-2-甲基丙磺酸和丙烯酸用量,引发剂浓度、抗交联剂及其他助剂对合成共聚物分子量的影响。结果表明,本实验的中和度为70%比较适宜。在此中和度下,AMPS的适宜用量范围为AM的75%~16.25%;AA的适宜用量范围44%~55%;(NH4)2S2O8的适宜用量范围为AM/AA/AMPS总量的0.07%~0.12% ;分子量随CO(NH2)2的增加而明显升高;甲基丙烯酸N,N-二甲氨基乙酯(DMAEMA)的适宜用量范围为0.06 %~0.10%;使用抗交联剂可以解决产品交联造成的难溶问题,但加入量不宜过多,否则分子量会下降;分子量调节剂醋酸钠的用量在1.24 %~1.54%范围内可以使产品的分子量达最佳值。本实验可以得到分子量达1.9×107的AM/AA/AMPS及盐的共聚产物。  相似文献   

13.
文章采用均聚共水解的方法,以丙烯酰胺为单体、Na2CO3为水解剂,β-二酮为配位剂,复合引发体剂体系下,制备了高分子量速溶型聚丙烯酰胺,研究了单体、引发剂、配位剂、pH值以及引发温度对反应速率和产物分子量的影响。结果表明,当单体、引发剂、配位剂的质量分数分别为25%、0.005%、0.05%,pH值为10.5,引发温度为15℃时,得到水解度为25%左右,重均分子量为1 900×104以上的高分子量速溶型阴离子部分水解聚丙烯酰胺。  相似文献   

14.
聚丙烯酰胺反相微乳胶的制备及其驱油性能研究   总被引:1,自引:0,他引:1  
以绘制的Span80/Tween80-煤油-水(丙烯酰胺水溶液)拟三元相图为依据,选择高单体质量分数微乳液体系,在反应温度为40℃,引发剂用量为单体质量0.2%的条件下,通过反相微乳液聚合反应,制得了w(PAM)=39.0%、相对分子质量为7.6×106的透明、稳定聚丙烯酰胺反相微乳胶,并对其驱油性能进行了考察.实验结果表明,聚丙烯酰胺反相微乳胶的驱油性能较好,在相同条件下,聚丙烯酰胺反相微乳胶水乳液比聚丙烯酰胺水溶液的驱油效率提高约7.4%.  相似文献   

15.
两种低阳离子度高相对分子质量PDA的制备   总被引:1,自引:0,他引:1  
以二甲基二烯丙基氯化铵(DMDAAC)和丙烯酰胺(AM)为原料,过硫酸铵和亚硫酸氢钠复合物为引发体系,通过水溶液聚合法合成了10%和20%阳离子度DMDAAC和AM的共聚物(PDA)胶体产物。研究了单体质量、引发剂用量、聚合反应温度和Na4EDTA用量对产物特征黏度的影响。研究结果表明,在单体质量百分数为20%和37.5%,引发剂质量分数为3.0×10-4和5.1×10-5,聚合反应温度为45℃,Na4EDTA质量分数为2.0×10-4的最佳工艺条件下,10%和20%阳离子度PDA的特征黏度分别为17.1 dL/g和12.2 dL/g。2种反应单体的不同竞聚率导致其PDA产物最佳工艺参数的不同。  相似文献   

16.
阳离子型高分子絮凝剂P(DMDAAC-AM)的分散聚合制备初探   总被引:1,自引:0,他引:1  
采用分散聚合法,在乙醇-水体系中制备了二甲基二烯丙基氯化铵(dimethyl diallyl ammonium chloride, DMDAAC)和丙烯酰胺(acylamide, AM)的共聚物P(DMDAAC-AM)。研究了醇水质量比、单体质量分数、单体的物质的量比、引发剂用量、引发温度、EDTA等因素对聚合物的转化率和特性黏度的影响。使用红外光谱仪和透射电镜对产品的结构和形貌进行了表征。结果表明:以聚乙烯吡咯烷酮(PVP)为分散剂,用量为单体总质量的4%;在醇水质量比为1:1、单体质量分数为40%、DMDAAC与AM物质的量比为2:8、过硫酸钾为引发剂(其用量为体系总质量的0.04%)引发温度为40℃的条件下,得到特性黏度为94.77(cm3/g)、易分离提纯、溶解迅速的产品。  相似文献   

17.
分别采用碳二亚胺法和氯甲酸异丁酯法制备环丙沙星的牛血清白蛋白与卵清白蛋白载体的人工完全抗原CPFX-BSA和CPFX-OVA.人工完全抗原经SDS-PAGE凝胶电泳初步鉴定后,考马斯亮蓝染色法测定蛋白质含量分别为1.24和0.58 mg.mL-1,将偶联抗原稀释至一定浓度,紫外分光光度法测其波形,根据偶联前后波形及吸收峰的变化鉴定偶联物分子量大于载体蛋白,证实CPFX与BSA和OVA偶联成功,根据游离半抗原、载体蛋白和完全抗原偶联物各自的紫外吸光度、摩尔吸光系数,初步定量计算出偶联结合比分别为7.2∶1和6.4∶1.质谱法测定CPFX-BSA和CPFX-OVA分子量分别为6.895×104和4.586×104,推算偶联比分别为5.6∶1和4.2∶1,进一步证实了偶联比和人工抗原制备成功.制备的人工完全抗原CPFX-BSA和CPFX-OVA可分别作为免疫抗原和包被抗原,为环丙沙星单克隆抗体的制备以及环丙沙星快速检测试剂盒的研制奠定基础.  相似文献   

18.
采用光辅助引发技术,通过水溶液聚合法制备丙烯酰胺(AM)、丙烯酰氧乙基三甲基氯化铵(DAC)和丙烯酸钠(AANa)的共聚物P(AM-DAC-AANa).考察了m(DAC+AANa)∶m(AM)、引发温度、单体(AM+DAC+AA)质量分数、反应液pH值、硫脲质量分数、偶氮类引发剂质量分数等因素对聚合反应结果的影响,并与传统的引发剂引发聚合结果进行了对比.在m(DAC+AANa)∶m(AM)=15∶85,引发温度20℃,单体质量分数32%,pH值6,硫脲质量分数1.0%,偶氮类引发剂质量分数0.010 0%的条件下,得到了溶解时间66 min,特性黏数为13.56 dL·g-1的聚合物,并用FT-IR对其结构进行了表征.  相似文献   

19.
低损耗阶跃型聚合物光纤制备工艺的研究   总被引:3,自引:0,他引:3  
介绍了制备低损耗阶跃型聚合物光纤的工艺流程,研究发现随着链转移剂质量分数的增加,聚合物的相对分子质量相应降低,聚合物光纤的力学性能也随之改变,加入改性单体丙烯酸乙酯或丙烯酸丁酯后,提高了聚合物光纤的柔韧性,但降低了聚合物光纤的透光率,包层工艺对光纤损耗也有较大影响。通过原料精馏提纯、材料改性和共挤工艺等措施制备出低损耗聚合物光张样品,其光损耗小于200dB/km(波长650nm)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号