首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.  相似文献   

2.
Bao S  Wu Q  McLendon RE  Hao Y  Shi Q  Hjelmeland AB  Dewhirst MW  Bigner DD  Rich JN 《Nature》2006,444(7120):756-760
Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.  相似文献   

3.
Identification and expansion of human colon-cancer-initiating cells   总被引:2,自引:0,他引:2  
Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form tumours. Such tumours were serially transplanted for several generations, in each of which we observed progressively faster tumour growth without significant phenotypic alterations. Unlike CD133- cells, CD133+ colon cancer cells grew exponentially for more than one year in vitro as undifferentiated tumour spheres in serum-free medium, maintaining the ability to engraft and reproduce the same morphological and antigenic pattern of the original tumour. We conclude that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.  相似文献   

4.
G Driessens  B Beck  A Caauwe  BD Simons  C Blanpain 《Nature》2012,488(7412):527-530
Recent studies using the isolation of a subpopulation of tumour cells followed by their transplantation into immunodeficient mice provide evidence that certain tumours, including squamous skin tumours, contain cells with high clonogenic potential that have been referred to as cancer stem cells (CSCs). Until now, CSC properties have only been investigated by transplantation assays, and their existence in unperturbed tumour growth is unproven. Here we make use of clonal analysis of squamous skin tumours using genetic lineage tracing to unravel the mode of tumour growth in vivo in its native environment. To this end, we used a genetic labelling strategy that allows individual tumour cells to be marked and traced over time at different stages of tumour progression. Surprisingly, we found that the majority of labelled tumour cells in benign papilloma have only limited proliferative potential, whereas a fraction has the capacity to persist long term, giving rise to progeny that occupy a significant part of the tumour. As well as confirming the presence of two distinct proliferative cell compartments within the papilloma, mirroring the composition, hierarchy and fate behaviour of normal tissue, quantitative analysis of clonal fate data indicates that the more persistent population has stem-cell-like characteristics and cycles twice per day, whereas the second represents a slower cycling transient population that gives rise to terminally differentiated tumour cells. Such behaviour is shown to be consistent with double-labelling experiments and detailed clonal fate characteristics. By contrast, measurements of clone size and proliferative potential in invasive squamous cell carcinoma show a different pattern of behaviour, consistent with geometric expansion of a single CSC population with limited potential for terminal differentiation. This study presents the first experimental evidence for the existence of CSCs during unperturbed solid tumour growth.  相似文献   

5.
Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.  相似文献   

6.
O'Brien CA  Pollett A  Gallinger S  Dick JE 《Nature》2007,445(7123):106-110
Colon cancer is one of the best-understood neoplasms from a genetic perspective, yet it remains the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. What has yet to be established is whether every colon cancer cell possesses the potential to initiate and sustain tumour growth, or whether the tumour is hierarchically organized so that only a subset of cells--cancer stem cells--possess such potential. Here we use renal capsule transplantation in immunodeficient NOD/SCID mice to identify a human colon cancer-initiating cell (CC-IC). Purification experiments established that all CC-ICs were CD133+; the CD133- cells that comprised the majority of the tumour were unable to initiate tumour growth. We calculated by limiting dilution analysis that there was one CC-IC in 5.7 x 10(4) unfractionated tumour cells, whereas there was one CC-IC in 262 CD133+ cells, representing >200-fold enrichment. CC-ICs within the CD133+ population were able to maintain themselves as well as differentiate and re-establish tumour heterogeneity upon serial transplantation. The identification of colon cancer stem cells that are distinct from the bulk tumour cells provides strong support for the hierarchical organization of human colon cancer, and their existence suggests that for therapeutic strategies to be effective, they must target the cancer stem cells.  相似文献   

7.
Glioblastoma stem-like cells give rise to tumour endothelium   总被引:2,自引:0,他引:2  
Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.  相似文献   

8.
Transformed, oncogenic precursors, possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours, have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs), amongst which BMP4 elicits the strongest effect, trigger a significant reduction in the stem-like, tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly, in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation, and increased expression of markers of neural differentiation, with no effect on cell viability. The concomitant reduction in clonogenic ability, in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP-BMPR signalling system--which controls the activity of normal brain stem cells--may also act as a key inhibitory regulator of tumour-initiating, stem-like cells from GBMs and the results also identify BMP4 as a novel, non-cytotoxic therapeutic effector, which may be used to prevent growth and recurrence of GBMs in humans.  相似文献   

9.
Identification of cells initiating human melanomas   总被引:1,自引:0,他引:1  
Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.  相似文献   

10.
Bv8 regulates myeloid-cell-dependent tumour angiogenesis   总被引:1,自引:0,他引:1  
Shojaei F  Wu X  Zhong C  Yu L  Liang XH  Yao J  Blanchard D  Bais C  Peale FV  van Bruggen N  Ho C  Ross J  Tan M  Carano RA  Meng YG  Ferrara N 《Nature》2007,450(7171):825-831
Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.  相似文献   

11.
A novel strategy for cancer treatment: Targeting cancer stem cells   总被引:1,自引:0,他引:1  
Cancer stem cell/tumor-initiating cell (CSC/TIC) is a subclass of cancer cells possessing parts of properties of normal stem cell. It has a high capacity of proliferation and plays a pivotal role in tumor recurrence and tumor resistance to radiotherapy and chemotherapy. At present, small molecule inhibitors and fusion proteins are widely used in the CSC-targeting strategy. Gene-virotherapy, which uses oncolytic adenovirus as a vector to mediate the expression of therapeutic gene, shows a significant superiority to other regimens of cancer treatment and has a good efficacy in the treatment of solid tumors. Thus, it is a promising choice to apply gene-virotherapy into the CSC-targeting treatment. Based on the molecular mechanism underlying CSC self-renewal, a series of effective strategies for targeting CSC have been established. This review will summarize the recent research progresses on CSC-targeting treatment.  相似文献   

12.
J Chen  Y Li  TS Yu  RM McKay  DK Burns  SG Kernie  LF Parada 《Nature》2012,488(7412):522-526
Glioblastoma multiforme is the most common primary malignant brain tumour, with a median survival of about one year. This poor prognosis is due to therapeutic resistance and tumour recurrence after surgical removal. Precisely how recurrence occurs is unknown. Using a genetically engineered mouse model of glioma, here we identify a subset of endogenous tumour cells that are the source of new tumour cells after the drug temozolomide (TMZ) is administered to transiently arrest tumour growth. A nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels quiescent subventricular zone adult neural stem cells also labels a subset of endogenous glioma tumour cells. On arrest of tumour cell proliferation with TMZ, pulse-chase experiments demonstrate a tumour re-growth cell hierarchy originating with the Nes-ΔTK-GFP transgene subpopulation. Ablation of the GFP+ cells with chronic ganciclovir administration significantly arrested tumour growth, and combined TMZ and ganciclovir treatment impeded tumour development. Thus, a relatively quiescent subset of endogenous glioma cells, with properties similar to those proposed for cancer stem cells, is responsible for sustaining long-term tumour growth through the production of transient populations of highly proliferative cells.  相似文献   

13.
PML targeting eradicates quiescent leukaemia-initiating cells   总被引:1,自引:0,他引:1  
The existence of a small population of 'cancer-initiating cells' responsible for tumour maintenance has been firmly demonstrated in leukaemia. This concept is currently being tested in solid tumours. Leukaemia-initiating cells, particularly those that are in a quiescent state, are thought to be resistant to chemotherapy and targeted therapies, resulting in disease relapse. Chronic myeloid leukaemia is a paradigmatic haematopoietic stem cell disease in which the leukaemia-initiating-cell pool is not eradicated by current therapy, leading to disease relapse on drug discontinuation. Here we define the critical role of the promyelocytic leukaemia protein (PML) tumour suppressor in haematopoietic stem cell maintenance, and present a new therapeutic approach for targeting quiescent leukaemia-initiating cells and possibly cancer-initiating cells by pharmacological inhibition of PML.  相似文献   

14.
Chronic inflammation has long been associated with increased incidence of malignancy and similarities in the regulatory mechanisms have been suggested for more than a century. Infiltration of innate immune cells, elevated activities of matrix metalloproteases and increased angiogenesis and vasculature density are a few examples of the similarities between chronic and tumour-associated inflammation. Conversely, the elimination of early malignant lesions by immune surveillance, which relies on the cytotoxic activity of tumour-infiltrating T cells or intra-epithelial lymphocytes, is thought to be rate-limiting for the risk to develop cancer. Here we show a molecular connection between the rise in tumour-associated inflammation and a lack of tumour immune surveillance. Expression of the heterodimeric cytokine interleukin (IL)-23, but not of its close relative IL-12, is increased in human tumours. Expression of these cytokines antagonistically regulates local inflammatory responses in the tumour microenvironment and infiltration of intra-epithelial lymphocytes. Whereas IL-12 promotes infiltration of cytotoxic T cells, IL-23 promotes inflammatory responses such as upregulation of the matrix metalloprotease MMP9, and increases angiogenesis but reduces CD8 T-cell infiltration. Genetic deletion or antibody-mediated elimination of IL-23 leads to increased infiltration of cytotoxic T cells into the transformed tissue, rendering a protective effect against chemically induced carcinogenesis. Finally, transplanted tumours are growth-restricted in hosts depleted for IL-23 or in IL-23-receptor-deficient mice. Although many strategies for immune therapy of cancer attempt to stimulate an immune response against solid tumours, infiltration of effector cells into the tumour tissue often appears to be a critical hurdle. We show that IL-23 is an important molecular link between tumour-promoting pro-inflammatory processes and the failure of the adaptive immune surveillance to infiltrate tumours.  相似文献   

15.
There is accumulating evidence that cancer stem cells (CSCs) play an important role in tumor progression. Novel strategies targeting CSCs have been widely researched. In the present study, we explored whether such CSCs existed in human ovarian cancer (OVCA) cell line and whether anti-CD44 antibody had effects on such subpopulation. We isolated and identified spheroid cells from SKOV-3. Then we used A3D8, an anti-CD44 mAb to treat spheroid cells with so-called "stemness". Effects of A3D8 on spheroid cells’ biological behaviors were examined. Our findings showed that there was a small subpopulation that had so-called "stemness" in SKOV-3 cell line. Against spheroid cells, A3D8 can (1) inhibit cell proliferation; (2) change cell cycle distribution and expression of p21, CDK2 and cyclinA; (3) enhance cisplatin (DDP)-induced apoptosis; (4) promote cell differentiation; (5) inhibit clone formation efficiency; (6) reduce invasive efficacy; (7) inhibit tumorigenicity. Thus, to sum up points which we have just showed, spheroid cells isolated from SKOV-3 can be used as an appropriate in vitro model for relevant study of human ovarian CSCs. And our results reasoned that anti-CD44 therapy may become a potential promising strategy for OVCA treatment.  相似文献   

16.
Lysyl oxidase is essential for hypoxia-induced metastasis   总被引:1,自引:0,他引:1  
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.  相似文献   

17.
Expression of N-myc in teratocarcinoma stem cells and mouse embryos   总被引:3,自引:0,他引:3  
A Jakobovits  M Schwab  J M Bishop  G R Martin 《Nature》1985,318(6042):188-191
The N-myc gene, which is distantly related to the proto-oncogene c-myc, was first detected as an amplified sequence in human neuroblastoma cell lines and tumours. It has since been revealed that there is up to a 300-fold amplification of N-myc DNA in almost 50% of advanced metastatic human neuroblastomas, whereas amplification is not detected in less advanced tumours that have a better prognosis (ref.3 and M.S., unpublished data). Although expression of N-myc is detectable in all neuroblastoma cell lines and tumours examined, its level is greatly enhanced when the N-myc gene is amplified. Recently, it has been shown that on co-transfection with the c-Ha-ras (EJ) gene, N-myc can induce the malignant transformation of rat embryo fibroblasts. Taken together, these data imply a function for N-myc in the development and/or progression of human neuroblastomas. Surveys indicate that N-myc also may be amplified and/or expressed in two other types of human tumours and cell lines derived from them: retinoblastomas and small cell lung cancers. Here, we report that N-myc is expressed at high levels in mouse and human teratocarcinoma stem cells, thus identifying another tumour cell type that expresses the N-myc gene. In addition, we found that N-myc is abundantly expressed in mouse embryos at mid-gestation and that its expression appears to decrease as the embryo approaches term. In the adult mouse, N-myc is expressed at an approximately fivefold lower level in the brain than in teratocarcinoma stem cells and embryos, and at even lower levels in the adult testis and kidney. Our data represent the first demonstration of expression of the N-myc gene in normal cells, and suggest that N-myc may be involved in mammalian embryogenesis.  相似文献   

18.
Variability in the phenotype of cells comprising individual tumours is a striking feature of animal and human cancer and is generally referred to as tumour heterogeneity. Studies of clonally derived cell populations from tumours that originated presumably from a single transformed cell have shown that tumours are made up of cells that differ in a variety of traits, including drug resistance, antigen expression and metastatic potential. The origin and maintenance of tumour heterogeneity are unclear, but mutational and epigenetic mechanisms are thought to be involved. Here we report the results of a search for transforming genes in human melanoma which have raised the possibility that ras gene activation follows the same variable pattern as other traits involved in tumour heterogeneity. DNA from 4 of 30 melanoma cell lines yielded transforming ras genes in the NIH/3T3 assay. Of five cell lines originating from separate metastatic deposits of a single patient, only one contained activated ras, indicating heterogeneity in ras activation in this case and suggesting that ras activation was not involved in tumour initiation or maintenance in this patient.  相似文献   

19.
Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (refs 5-9). Here we show that a variable number (range 20-90%, mean 60.7%) of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium has a neoplastic origin. The vascular endothelium contained a subset of tumorigenic cells that produced highly vascularized anaplastic tumours with areas of vasculogenic mimicry in immunocompromised mice. In vitro culture of GSCs in endothelial conditions generated progeny with phenotypic and functional features of endothelial cells. Likewise, orthotopic or subcutaneous injection of GSCs in immunocompromised mice produced tumour xenografts, the vessels of which were primarily composed of human endothelial cells. Selective targeting of endothelial cells generated by GSCs in mouse xenografts resulted in tumour reduction and degeneration, indicating the functional relevance of the GSC-derived endothelial vessels. These findings describe a new mechanism for tumour vasculogenesis and may explain the presence of cancer-derived endothelial-like cells in several malignancies.  相似文献   

20.
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号