共查询到19条相似文献,搜索用时 95 毫秒
1.
数字岩心技术在油气的勘探开发中发挥着越来越重要的作用。由于传统的数字岩心重构方法存在成本高、耗时长等问题,提出使用带有梯度惩罚的生成对抗神经网络(WGAN-GP)实现页岩的三维数字岩心重构。以三组分的页岩图像为训练样本进行模型的训练,得到了可以生成三维页岩图像的生成器模型,进而重构了多个三维岩心图像。将重构岩心与原始岩心进行了各种参数的对比分析,结果表明重构岩心与原始岩心具有很好的一致性,证明了本文方法的可靠性。使用WGAN-GP进行岩心重构具有岩心生成速度快、重构图像尺寸不受限制等优点,具有广泛的应用前景。 相似文献
2.
为了解决传统虚拟试穿方法存在的手臂遮挡与细节模糊问题,提升重建图像的视觉质量,提出一种基于生成对抗网络的虚拟试穿方法.通过纹理提取模块和残差样式编码模块提取服装细节信息,并结合人体表征输入与人物姿势来重建试穿图像,解决了手臂遮挡问题,实现了对扭曲失误服装的修复还原,且重建图像服装边缘清晰.定性分析表明,改进虚拟试穿方法... 相似文献
3.
杨光锴 《河北省科学院学报》2022,(6):17-21+60
在计算机机械学习领域,相对于数字和英文字母,手写汉字的自动生成研究是个重点难点问题,且具有重要研究意义。随着深度学习的不断发展,生成对抗网络在图像生成领域取得了很大进展。本文提出了一种基于循环生成对抗网络(Cycle Generative Adversarial Networks, CycleGAN)的无监督手写汉字生成方法。利用标准仿宋字体图像和手写字体图像进行训练,生成的手写汉字图像具有比较高的识别度。 相似文献
4.
乳腺癌磁共振成像(nuclear magnetic resonance imaging, MRI)数据由于不同医院采集方式不同、设备不同或病人等自身原因,会存在同一病人不同序列缺失的问题。目前主流的图像生成对抗网络Pix2Pix和Cycle-consistency是医学图像生成的两种主要模式,这类方法要求不同MRI序列数据配对出现,难以处理存在缺失的数据,此外,该类方法往往关注整幅图像的生成质量,缺少对疾病诊断更有价值的病灶区域的生成质量的监控。针对以上问题,该文受配准网络(RegGAN)自适应对准图像空间分布的启发,设计了一种新的基于特征增强的双注意力配准生成对抗网络DA-RegGAN。该网络在生成器中引入卷积注意力模块,使网络更注重病灶的学习;在判别器中添加梯度正则化约束,主要解决网络训练不稳定容易出现模式崩溃的现象,使网络生成包含更清晰的病灶细节全局图。该文在1 697幅乳腺数据上开展消融实验、不同图像生成算法间的对比实验、肿瘤分类实验,进一步验证了方法的有效性。与原始RegGAN比,全局图像生成质量和局部病灶图像生成质量均得到提升,局部图像质量较原始PSNR提升了0.518,S... 相似文献
5.
针对基于深度学习的分类器面对对抗样本时缺乏稳定性的问题,基于生成对抗网络(GAN)提出了一种新的模型,用于生成对抗样本。该模型首次实现了直接以恶意网络流为原始样本的对抗样本生成,并首次提出了弱相关位的概念,用于保证恶意网络流对抗样本的可执行性和攻击性。利用该模型生成的对抗样本能够有效地欺骗基于深度学习的网络安全检测器,且通过实验验证了该对抗样本具有实际攻击效果。 相似文献
6.
该文提出了一种改进条件生成对抗网络的文本生成图像模型(TxtGAN),使用一对生成器和判别器的单阶段生成方式生成高分辨率图像,避免因训练多个GAN消耗大量计算资源.生成器网络由一系列生成模块(RUPBlock)组成,每个模块中应用条件批量归一化方法,在实现图像生成的同时充分融合了文本信息与图像特征,较好地保留了文本信息... 相似文献
7.
在VGG生成对抗网络的基础上,提出了一种改进的基于残差网络的生成对抗网络漫画风格迁移的图片生成技术,用于图片特征提取及图片生成,使具有漫画家卡通风格的特征迁移到现实图片中,和VGG生成对抗网络相比,在一定程度上缓解了梯度消失、过拟合等问题.实验表明,相较于VGG生成对抗网络,改进后的模型在图像特征提取及生成都表现了更好的性能. 相似文献
8.
【目的】研究修复带网纹遮挡的人脸照片,以有助于提高后续的人脸验证的准确性。【方法】基于深度学习的模型(针对修复网纹遮挡的人脸照片)在训练时都要求输入对应的网纹数据,但是在实际应用中要获得对应的网纹数据却是非常困难的。为了避免使用对应的网纹数据对人脸图像进行有效的修复,提出了分离对抗生成网络。该网络利用网纹遮挡的人脸照片与干净的人脸照片做像素差生成残差网纹,利用1个分离网络和3个判别网络进行图像修复。【结果】实验结果表明所提出的方法对于消除人脸图像中网纹遮挡有效。【结论】针对带网纹结构遮挡的人脸图像,在对应网纹数据缺失的情况下,通过分离对抗生成网络,依然可以取得很好的图像修复效果。 相似文献
9.
10.
提出了一种新的基于生成对抗网络的人脸图像彩色化方法.所提出的网络结构包含两组生成对抗子网络,每个子网络由一个生成器和判别器组成.其中,一个对抗子网络A(包含生成器A和判别器A)实现从灰度图像到彩色图像的翻译过程,另一个子网络B(包含生成器B和判别器B)反转该过程,即生成器B对称地使用生成器A的最终输出图像作为输入,用来重建原始的人脸灰度图像.其中,网络中的循环损失进行图像重建,而生成损失和对抗损失用来保证生成的图像更加接近真实图像.实验结果表明,这种结构设计不仅能实现自然逼真的人脸图像彩色化,还能同时保证人脸的身份属性不变. 相似文献
11.
针对当前卷积神经网络未能充分利用浅层特征信息, 并难以捕获各特征通道间的依赖关系、 丢失高频信息的问题, 提出一种新的生成对抗网络用于图像超分辨率重建. 首先, 在生成器中引入WDSR-B残差块充分提取浅层特征信息; 其次, 将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中, 学习各特征通道的重要程度和高频信息; 最后, 采用谱归一化代替不利于图像超分辨率的批规范化, 减少计算开销, 稳定训练. 实验结果表明, 该算法与其他经典算法相比能有效提高浅层特征信息的利用率, 较好地重建出图像的细节信息和几何特征, 提高超分辨率图像的质量. 相似文献
12.
生成式对抗网络(GAN)是一种优秀的生成式模型,能够不依赖任何先验假设,学习到高维复杂的数据分布。这一强大的性能使得它成为近年来研究的热点,并在诸多应用领域取得了显著的研究成果。首先介绍了生成式对抗网络的基本原理,各种目标函数以及常用的模型结构。然后,详细分析了生成式对抗网络在条件限制下生成图片的各种演进方法。此外,介绍了生成式对抗网络在不同领域的应用,包括高分辨率图像生成、小目标检测、非图像数据生成、医学图像分割等方面的最新研究进展。最后,总结了生成式对抗网络训练过程中的优化技巧。旨在通俗地阐明GAN的基础理论以及发展历程,并从应用角度对未来工作进行了展望。 相似文献
13.
在真实雾天场景下,针对除雾网络无法去除远处雾气、天空区域容易出现噪声的问题,提出了一种基于多尺度密集特征融合的生成式对抗除雾网络,并采用制作的合成雾天数据集进行对抗训练.首先,对除雾网络进行设计,构建了网络模型;其次,从合成晴朗天气图像中利用深度标签生成逼真的雾天数据集,以适用于真实雾天除雾领域;最后,在真实雾天数据集上测试,选取近几年具有代表性的6种基于深度学习的除雾网络进行主观视觉效果,并借助除雾领域常用的无参考图像质量评价指标进行客观分析.研究结果表明:提出的除雾网络在真实场景下的除雾效果较其他网络有显著提升,主观视觉效果明显优于对比的除雾网络,在无参评价指标上综合表现优于其他除雾网络. 相似文献
14.
针对风格多样的中文字体设计和复杂操作的问题,提出一种生成式对抗网络的汉字风格迁移和字库设计方法。将宋体与黑体作为测试数据集,将瑞虎宋体作为目标数据集,通过生成式对抗网络对抗训练方法,使宋体与黑体字风格转换为瑞虎宋体风格。通过实验生成的字体图像轮廓更加平滑和美观,表明本文提出的方法能够显著提高对字形设计的工作效率。 相似文献
15.
随着可再生能源机组以多微网的形式接入配电网,其出力的不确定性会给配电网与多微网调度带来挑战。因此,如何对配电网与多微网中可再生能源的特性进行分析,准确把握可再生能源的出力特性,建立考虑可再生能源出力特性的配电网与多微网调度模型,成为目前亟待研究和解决的问题。本文提出了一种基于Wasserstein生成对抗网络的配电网与多微网日前随机调度方法。首先针对风电以及光伏日前预测的不确定性,采用基于Wasserstein生成对抗网络的数据驱动算法,对风电和光伏出力预测误差进行场景生成;对于生成的风光出力场景,基于K-mediods场景削减法得到风光典型场景;在配电网与多微网调度目标函数中综合考虑调度的经济性指标以及韧性指标,基于场景法模拟可再生能源出力的不确定性,建立配电网与多微网日前随机调度模型并求解。仿真结果表明,所提的配电网与多微网随机调度模型在可再生能源出力场景生成方面,相比于传统假定概率分布的生成方法,其生成的场景更接近实际场景。 相似文献
16.
针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,文章提出一种将改进后的深度卷积生成对抗网络(DCGAN)与深度神经网络(DNN)相结合的入侵检测模型(DCGAN-DNN),深度卷积生成对抗网络能够通过学习已知攻击样本数据的内在特征分布生成新的攻击样本,并对深度卷积生成对抗网络中生成网络所用的线性整流(ReLU)激活函数作出改进,改善了均值偏移和神经元坏死的问题,提升了训练稳定性。使用CIC-IDS-2017数据集作为实验样本对模型进行评估,与传统的过采样方法相比DCGAN-DNN入侵检测模型对于未知攻击和少数攻击类型具有较高检测率。 相似文献
17.
针对正常和异常声音可能具有较大的相似性, 有时无法利用自编码器重构误差大小区分的问题, 提出一种生成对抗单分类网络方法进行异常声音检测, 通过多次训练, 该方法学习正常样本的分布特征. 在测试过程中, 测试正常样本能以极小的误差进行重构, 而异常样本重构效果较差, 在某些频率段会发生畸变, 从而给出判别分类结果. 实验采用UrbanSound8K公开数据集和实测电机声音数据集进行了测试, 获得该方法的准确率分别为86.3%和98.1%, 比卷积自动编码器等主要深度学习方法分别提高了5.0%和3.0%. 相似文献
18.
提出了一种基于生成对抗网络的细胞形变动态分类方法,以活细胞视频中的细胞形变动态为对象,引入分类器辅助的生成对抗网络结构同步训练生成对抗网络和分类网络,通过生成对抗网络产生的数据提高了原本分类网络分辨细胞形变动态的性能.首先,细胞动态图像被用于将活细胞视频中的时间维度进行压缩,使其从视频域映射到图像域以方便生成对抗网络的构建.其次,基于分类器辅助的生成对抗网络结构,将分类网络的分类信息作为辅助信息来改善生成对抗网络对多类样本的生成,同时生成网络生成的多类样本可以反过来优化分类网络对于细胞动态形变的分类性能.在构建的活细胞视频数据库上,可以验证提出方法能有效地捕获细胞视频中的空时细胞形变动态,并且其分类的性能优于其它主流方法. 相似文献
19.
针对目前基于深度学习的超分辨率重建图像存在的纹理等高频信息丢失问题,提出了多尺度残差生成对抗网络的图像超分辨率重建算法。首先,使用Dense-Res2Net模块替代SRGAN生成网络中原本的残差模块,并且组合特征压缩与激发网络(SENet)从多个尺度自适应地提取浅层特征信息。其次,引入全变分正则化损失(TV loss)指导生成器训练。最后,使用Wasserstein距离优化对抗损失,提高网络训练稳定性。实验结果表明,该算法重建出的图像在视觉效果上保留了更加丰富的高频细节,与当前主流超分算法相比,该方法不仅有更高的峰值信噪比(PNSR)与结构相似性(SSIM),且学习感知图像块相似度(LPIPS)的分数上均优其他算法。 相似文献