共查询到17条相似文献,搜索用时 78 毫秒
1.
提出了一种基于改进U-Net(M-Net)模型的电磁逆散射算法.M-Net模型主要由多尺度输入层、U型卷积神经网络(CNN)、多尺度均值输出层组成.将散射场数据作为网络输入,能够在保证计算精度与计算效率的同时,减少人工计算工作量.以二维电介质为重构目标的仿真实验表明:与U-Net模型对比,应用M-Net模型求解电磁逆散射问题较为高效,输出结果误差更小. 相似文献
2.
为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu, PSPnet, Segnet, DeeplabV3+, U-Net进行对比,结果表明, 本文方法在各项指标上均优于其他分割方法. 相似文献
3.
电磁反演是一种典型的逆散射问题,该问题具有非线性以及不适定性。目前已有一些算法被提出用来解决该问题,但已有算法在效率和精度上无法同时兼顾。为了实时反演高质量图像,文中提出了一种结合玻恩迭代高斯混合广义近似消息传递(Born Iterative Gaussian Mixture Generalized Approximate Message Passing, BI-GM-GAMP)和卷积神经网络的混合算法,具体为:首先通过BI-GM-GAMP方法获得初步反演图像,随后利用这些图像训练U-Net网络,最后通过训练的U-Net网络实现新的电磁反演任务。仿真实验验证了该方法的有效性。 相似文献
4.
针对U-Net网络感受野受限以及信息丢失导致的分割精度低的问题,提出了一种基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割算法.首先,在U-Net网络中引入感受野模块(receptive field block,RFB)来增大网络的感受野,解决了网络由于感受野受限带来的分割精度低的问题.此外在网络中引入有效的通道注意模块(efficient channel attention,ECA)来增加网络对有用特征的响应,抑制网络中的冗余特征.使用BraTS(the brain tumor image segmentation challenge)提供的脑肿瘤MR图像数据对本文算法进行测试,用Dice相似性系数等指标进行评价,结果显示在完整肿瘤、核心肿瘤以及增强肿瘤的Dice值分别可达到0.86、0.86、0.79.与U-Net模型以及其他的网络相比得到了提高.实验结果表明,本文提出的算法能够有效提升脑肿瘤分割的精度,具有良好的分割性能. 相似文献
5.
计算机断层扫描(CT)产生的辐射风险已成为公众关注的问题.降低剂量将影响CT图像的质量以及医生的诊断结果.传统的基于深度网络算法中,同一层中的特征通道间的地位是平等的,影响信息的提取.为此,提出了一种具有注意力机制的U-Net残差网络.在U-Net中引入通道注意力模块驱使网络将更多的注意力集中于含有噪声和伪影信息的通道... 相似文献
6.
CT成像是检测新冠感染(COVID-19)病灶区域的重要手段之一,但需要专业的放射科医生判断且工作量较大。为了解决磨玻璃结节(GGO)以及肺部实变两种病变统一分割问题,在U-Net网络模型中加入改进的三重注意力模块,提高病灶特征的显著性,细化病灶的边缘特征,增加对小区域病灶的识别度,辅助医生判断。该方法构建的深度分割网络模型在COVID-19分割数据集中进行实验,得到的Sensitivity, Specificity, Dice, mIou分别为86.57%,99.33%,81.64%,88.23%。分割效果在这个模型中能得到更良好的体现。 相似文献
7.
针对U-Net图像分割在下采样过程中会丢失过多信息且在上采样过程恢复效果不佳,从而导致图像分割精度降低的缺陷,提出了一种基于多层次自注意力机制的U-Net图像分割算法。该多层次自注意力机制在每一层上采样层前均嵌入自注意力模块,将上采样层的输入与缩放的原图拼接后处理成模板图,再与原本的输入信息融合后输出到上采样层。该算法不仅能通过拼接原图的自注意力模块进一步提供更多细节信息,还能利用上采样层的特征选择功能减少拼接原图带来的背景噪音,提高模型的分割精度。最后,在PASCAL VOC数据集和DeepFashion2数据集的基础上进行了人体分割和服装分割实验。实验结果 证明,该方法 能较好地改善图像的分割性能,从而证明了其正确性和有效性。 相似文献
8.
应新疆塔里木油田深层两大类复杂油藏项目的要求,采用多传感器联合的野外地质露头采集技术与多尺度数字露头构建技术,建立了基于多尺度-多信息三维数字露头的综合地质知识库,其中一项重要的工作是深度学习在岩性、缝洞等方面的自动识别与研究。基于无人机拍摄的裂缝图像分辨率高且复杂的特点,在图像预处理阶段,首先对原始图像进行了切割,并做了灰度化处理以降低计算量。采用在医学领域内识别图像效果显著的U-Net网络模型,同时在传统U-Net模型的跳跃连接阶段引入注意力机制以提高目标特征的关注能力,带来模型性能的提升。使用处理过的真实岩石裂缝图像,完成了模型的训练和测试。实验结果表明:改进之后的网络模型裂缝识别效果良好,精确率可以达到88%,较原始网络提高了2.37%,损失在0.110左右,F1分数能够达到85以上。 相似文献
9.
注意力机制能够挖掘与任务密切相关的重要信息并抑制非重要信息,在语义分割的深层特征表示中发挥着越来越重要的作用。本研究基于广泛应用的U-Net模型,提出了一种基于注意力机制的神经网络模型,针对边缘分割模糊的问题,将U-Net的压缩路径和扩展路径中的双卷积替换为卷积核选择模块,该模块允许网络的每一层根据输入信息进行自适应调整接受野的大小;另外,针对人像分割网络存在不同尺度的全局上下文信息被忽略的问题,采用多尺度预测融合的方法来利用不同尺度的全局信息,并采用双注意力模块汇总空间和通道两方面的注意力信息。大量实验表明,本文中方法的性能与U-Net、UNet++和Attention U-Net等网络相当或更好。 相似文献
10.
基于电磁成像模型,针对逆散射问题的病态性和非线性性质,引入压缩感知(CS)中的全变分(TV)算法,旨在减少所需天线数量,并提高电磁成像的图像质量.在玻恩(Born)迭代的基础上,引入全变分压缩感知算法(TV-CS). 仿真结果显示:即使目标被障碍物遮挡,该算法也能够在配置较少探测天线的情况下,对目标位置和形状进行准确的重构. 相似文献
11.
A new method is presented for EEG source reconstruction based on multichannel surface EEG recordings. From the low-resolution tomography obtained by the low resolution electromagnetic tomography algorithm (LORETA), this method acquires the source tomography, which has high-resolution by contracting the source region. In contrast to focal underdetermined system solver (FOCUSS), this method can gain more accurate result under certain circumstances. 相似文献
12.
针对网络的聚类进行研究,提出了一种基于标记注意力机制的社区发现算法,网络特征通过标记节点频率及反示例节点频率联合度量,为使网络特征的度量更加关注于示例节点的细节信息,引入注意力机制来处理网络特征。社区划分由复杂网络预处理、网络节点的策略、社区博弈归并三个部分组成,其中网络节点的策略由无贡献节点归并、节点到社区的判断以及节点逻辑标记和的判断三个步骤组成。实验借助于真实网络进行验证,在归一化互信息、模块度、社区划分数量及运行时间四个方面,基于标记注意力机制的社区发现算法都优于其它社区发现算法。在实际生活中应用此算法,能够更加直观地显示网络内部之间存在的联系。 相似文献
13.
基于学习者能力,针对基于循环神经网络(RNN)和长短期记忆(LSTM)网络的深度知识追踪(DKT)算法对早期知识点关注的不足,提出一种加入注意力机制的DKT算法,并用时隙聚类的方法对不同能力学习者动态分组并赋予不同的注意力权值,以建立更平衡、更客观的知识记忆程度权重分布模型.常用公开数据集上的实验结果表明:该模型优于2种基准模型和2种消融实验模型,说明所提出的模型能更好地表现学习者的知识状态. 相似文献
14.
积极应对气候变化是可持续发展的目标之一。针对气温准确预测任务,提出了一种基于图注意力机制的气温预测模型。该模型在气温站点组成的拓扑结构上使用了注意力机制,选择性地聚合周围区域的气温特征,再使用神经网络拟合复杂的气温变化规律,得到预测结果。实验使用了2000—2010年京津冀地区的气温数据,经大量实验验证,在极少依赖历史气温数据的情况下,模型能够得到更准确的预测值。模型能够为气候预测和气候灾害预防提供决策支持。 相似文献
15.
为实现复杂场景下多尺度仪表检测,提出了一种基于注意力机制的视频多尺度仪表检测算法。首先,利用基于空间注意力机制的特征提取网络,建模特征的长距离依赖,增强特征的表达能力;其次,提出了一种自适应特征选择模块(Adaptive Feature Selection Module, AFSM),对不同阶段的特征图进行权重调整,增强网络对多尺度目标的检测能力。在自建的仪表数据集上进行了实验。实验结果表明,相比较原来的Faster RCNN方法,所提出方法的检测精度提高了7.6%;与对比方法相比,检测精度也能达到95.4%。在对实际仪表监测视频的测试中,检测结果以及速度能够满足实际需要。所提方法通过改进特征提取网络和特征选择操作,增强了特征表达能力,有效降低了虚警,提升了网络对多尺度目标的检测性能。 相似文献
16.
利用神经网络将电磁逆散射问题与多尺度方法相结合,通过将散射场的场强数值输入多尺度融合模型中进行不断训练,实现目标的定位与重构. 对于目标区域内的手写数字散射体,首先利用Lenet网络模型定位目标散射体所在的区域;然后将散射体所在的区域进一步通过SmaAt-UNet神经网络学习,训练重构散射体的形状,进而确定该数字,不同的模型负责提取不同的特征;最后将特征融合在一起,以增强最终结果的表征能力. 相似文献
17.
现有群组推荐方法在偏好融合时大多采用预定义策略,这种静态方法忽略了群组间用户的交互,难以对复杂的决策过程进行建模,从而影响推荐效果。针对该问题,提出了一种基于注意力机制的群组推荐方法,使用注意力机制获取群组中每个用户对其他用户的注意力权重,为群组选出一个决策者,以此来模拟群组中用户的交互,再根据用户的加权偏好为群组推荐项目。通过在CAMRa2011和MovieLens1M数据集上与基线方法的对比可知,该方法在命中率和归一化折扣累计增益方面都有较大提高。 相似文献