共查询到17条相似文献,搜索用时 62 毫秒
1.
假设图G是最大度为7的平面图。 利用权转移的方法证明了,如果图G中弦5-圈和弦6-圈不相邻,那么图G的全色数是Δ+1。 相似文献
2.
最大度为6且不含相交4-圈的三类平面图的全染色 总被引:1,自引:1,他引:0
设G是一个不含相交4-圈的平面图且Δ(G)≥6,证明了如果G还不含相交3-圈,或不含5-圈,或不含6-圈,则全染色数χ″(G)=Δ(G)+1。 相似文献
3.
特殊平面图的全染色 总被引:1,自引:1,他引:1
孙向勇 《山东师范大学学报(自然科学版)》2007,22(1):10-12
给定一个图G,G的全k染色是指至多用k种颜色,对G的顶点和边同时进行染色,使得相邻的或相关联的两个元素(点和边)不染同一种颜色.图G的全染色数xT(G)是指使G全k染色的最小整数k.Δ(G)是G的最大度,本文对不含从4到k的圈,且3-圈不重点的平面图得出的结论有:如果(Δ,k)分别是(6,4),(5,5),(4,11),则G的全染色数是Δ 1. 相似文献
4.
最大度为6且不含5-圈或6-圈的平面图可8-全染色 总被引:1,自引:0,他引:1
G,G的k 全染色是指用k种颜色给G的点和边进行染色,使G的任意邻接点或邻接边均染不同的颜色,且G的任一点与该点的任一关联边均染不同的颜色.证明了最大度为6且不含5 圈或6 圈的平面图是可8 全染色的. 相似文献
5.
6.
证明了若G为最大度Δ(G)≤4且不含4,5,6-圈的平面图,则χ(G2)≤Δ(G)+7. 相似文献
7.
全染色是对图G的顶点和边同时进行正常染色,至少要用Δ+1个色才能对图G进行正常全染色.运用权转移的方法,证明了最大度为6不含相交三角形和4-圈的简单平面图是7全可染的. 相似文献
8.
给定一个图G,G的全k染色(全k可染)是指至多用k种颜色,对G的顶点和边同时进行染色,使得相邻的两个元素(点和边)染不同颜色。Δ(G)是G的最大度。关于图的全染色有猜想:任何一个简单图一定是全Δ 2可染的。而对不含l-圈的平面图,l∈{3,4,5,6},全染色猜想成立。 相似文献
9.
常建 《内蒙古师范大学学报(自然科学版)》2020,49(2)
图的全染色是指对图的顶点和边进行染色,使得相邻或相关联的元素染不同的颜色。利用权转移方法,证明了最大度为6且每个点至多与两个短圈相关联的简单平面图的全色数是7。所得结果是对全染色猜想的进一步支持。 相似文献
10.
给最大度为Δ的图进行全染色至少要用Δ+1种颜色.全染色猜想断言每个图都是(Δ+2)-全可染的.但即使对于平面图,全染色猜想依然未得到证实.在该研究方向已证明满足下述条件之一的最大度为Δ的平面图是(Δ+1)-全可染的:1)Δ≥9;2)Δ=8且不含相邻三角形.证明了最大度为7且不含带弦4-圈和带弦5-圈的平面图是8-全可染的.该结果进一步拓展了(Δ+1)-全可染平面图类. 相似文献
11.
倪伟平 《安徽大学学报(自然科学版)》2010,34(3)
对于最大度是Δ的可平面图G,如果χ′(G)=Δ,称G为第一类图;如果χ′(G)=Δ+1,称G为第二类图.χ′(G)表示G的边染色数.1965年,Vizing举例说明Δ=5的可平面图中既有第一类图,也有第二类图.作者运用Discharge方法证明最大度是5且不包含有弦的4-圈和有弦的5-圈,或不包含有弦的4-圈和有弦的6-圈的可平面图是第一类图. 相似文献
12.
图G的k-全染色是用k种颜色对图G的V(G)∪E(G)中的元素进行着色, 使得相邻或者相关联的两个元素染不同的颜色, 图G的全色数是使G存在k-全染色的最小整数k. 对最大度为Δ的平面图, 如果(1),Δ(G)≥5且任何点至多关联一个长度至多为5的圈, 或者(2),Δ≥4, 不含3-圈并且任何点至多关联一个长度至多为6的圈, 则它的全色数为Δ(G)+1。 相似文献
13.
倪伟平 《华东师范大学学报(自然科学版)》2010,2010(5):20-26
运用Discharge方法和临界图性质证明了,最大度是6且任意两个长度至多是6的k-圈不相邻的可平面图是第一类图. 相似文献
14.
图的正常点染色称为均匀的,若每个色类所含的顶点数至多相差1.利用平面图的性质及换色法技巧.证明了若图G是Δ(G)≥6且不含3,4-圈的平面图,则对任意的m≥Δ(G),图G是均匀m-可染的. 相似文献
15.
点关联较少3-面的平面图的全染色 总被引:1,自引:0,他引:1
孙向勇 《山东大学学报(理学版)》2007,42(5):14-18
证明了对每点至多关联2个3-面的平面图,全染色猜想成立. 对每点至多关联2个3-面且Δ(G)≥8的平面图,有xT(G)=Δ(G)+1.对每点至多关联[Δ(G)/2」个3-面且Δ(G)≥9的平面图,有xT(G)=Δ(G)+1. 相似文献
16.
用x'(G)表示G的边染色数.对于最大度是△的可平面图G,如果X'(G)=△,称G为第一类图;如果x'(G)=△+1,称G为第二类图.运用Dischrge方法证明:最大度是6且不含7圈的可平面图G是第一类图. 相似文献
17.
主要研究了平面图的无圈边染色问题。证明了对平面图G,如果G不包含3,5圈,且G中任意两个4-圈都不共边,则无圈边染色猜想成立;并且,如果G不含3-圈,且任意两个4-圈不共点,则G的无圈边染色数不大于Δ(G)+3。 相似文献