首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Adams嵌入原子势(EAM),利用分子动力学方法对单晶Al的熔化过程进行了模拟,分析了Al样品体熔化过程中结构、能量的变化及表面熔化过程中固-液界面的移动情况.模拟的结果表明:对于Al样品体熔化过程,体系的体积和内能在1 205K发生突变;通过计算1 000-1 200K下Al的表面熔化速度,得出热力学熔点为985K,与存在的实验结果基本吻合.  相似文献   

2.
利用同步辐射X射线衍射方法,研究了金刚石对顶砧中碳化锆(ZrC)的状态方程和结构相变,通过密度泛函理论(DFT)计算了该材料的高压压缩行为.结果表明:ZrC在压强为10.3 GPa时,发生拓扑相变;在压强为13.7 GPa时,相变结束.此外,ZrC立方相的体弹模量为158.6(8.6)GPa,相变后的结构体弹模量为23...  相似文献   

3.
基于经典的分子动力学模拟,运用嵌入原子势模型,研究了Mo的熔化曲线。通过分子动力学模拟得到的热状态方程与早期的实验及第一性原理计算结果相一致,验证了我们采用的EAM势的可靠性。单相模拟的结果表明钼在冲击熔化之前并没有固固相变的发生。通过固液共存的两相模拟方法获得了Mo的熔化温度数据,利用Simon函数拟合得到Mo的熔化曲线。两相模拟有效的考虑了过热效应,模拟结果证实了动高压实验的结论。  相似文献   

4.
ZnO岩盐结构熔化特性的分子动力学模拟   总被引:2,自引:0,他引:2  
利用分子动力学方法和经验势模型对岩盐结构ZnO高压下的熔化特性进行了研究.对ZnO闪锌矿结构常压下的熔化进行模拟,发现存在过热熔化现象,通过与实验比较得到其过热48%的结论,然后利用该结论修正得到了ZnO岩盐结构0-50GPa的高压熔化相图.其中岩盐结构ZnO高压熔化曲线在压力低于7GPa时和由Lindemann熔化方程得到的结果符合很好.  相似文献   

5.
基于无调节参数的Gordon-Kim势和一种检测离子运动的新技术,以KCaF3的分子动力学模拟结果为例,对钙钛矿ABX3的离子分子固体的结构相变作了探讨.包括对阱势、折叠结构、能垒、超离子态、稳定性骨架和离子分子集团BX6的“尺寸”和“形状”.以期对离子分子固体的结构相变有一个基本了解.  相似文献   

6.
基于分子动力学模拟研究聚乙烯醇(PVA)在加热和冷却过程中的结构特征和物理性质,获得了聚乙烯醇的一些重要的热力学和动力学数据。通过分析体系的键长分布、键角分布、二面角分布及全局取向有序参数考察聚乙烯醇的结构特征。结果表明:聚乙烯醇的聚合度与玻璃化转变温度(Tg)的关系与Ellis关系式吻合较好。在给定温度下,体系链越长,分子迁移率越小,黏度越大。另外,温度在Tg以上黏度值基本保持常数,而温度在Tg以下,无定形体系的黏度值是随着温度的升高而降低的,该结果与预测结果一致。  相似文献   

7.
本文采用分子动力学结合镶嵌原子势方法研究了高温高压下金属Mo的熔化性质.详细分析了Mo的熔化曲线并给出了熔化曲线T-P(温度-压强)方程,计算得到了Mo的等温压缩曲线和等压曲线.理论上获得Mo在常压下的平衡点温度为2695K,与其他实验和理论数据都符合的很好.同时我们还通过径向分布函数和HA指数研究了Mo在熔化过程中的结构变化情况.  相似文献   

8.
采用分子动力学方法模拟研究了金属锆中离位级联碰撞过程。分析发现,在相同条件下,声-电耦合特征时间对缺陷的分布和数目几乎没有影响,而随着初始离位能的增加,将推迟热峰的出现时间,最大缺陷数目增多。说明初始离位能的增加会使辐照损伤加剧。  相似文献   

9.
采用分子动力学方法结合嵌入原子势函数,应用势能、共近邻技术分析方法,研究了原子数为147、309和561的正二十面体(ICO),正十面体(Dh)和立方八面体(CO)的Fe、Al纳米粒子的熔化行为.结果表明,原子数为147、309、561的ICO结构的Fe、Al纳米粒子在熔化前保持原有结构;Dh与CO结构的Al纳米粒子在熔化前向ICO结构转变,ICO结构比Dh结构和CO结构更稳定.  相似文献   

10.
基于经典的分子动力学模拟,运用嵌入原子势模型,研究了 Mo 的熔化曲线。通过分子动力学模拟得到的热状态方程与早期的实验及第一性原理计算结果相一致,验证了我们采用的 EAM 势的可靠性。单相模拟的结果表明钼在冲击熔化之前并没有固固相变的发生。通过固液共存的两相模拟方法获得了 Mo 的熔化温度数据,利用 Simon 函数拟合得到Mo 的熔化曲线。两相模拟有效的考虑了过热效应,模拟结果证实了动高压实验的结论。
  相似文献   

11.
采用分子动力学模拟的方法,对金属Al的冲击熔化过程及平衡熔化过程进行实际研究,并通过对径向分布函数的观察,给出了确实可信的研究结果。  相似文献   

12.
利用壳层模型分子动力学方法,研究了高温高压条件下FeO的熔化温度,同时还计算了温度在300K及压强上升到140 GPa时FeO的状态方程.作者在研究中,考虑了分子动力学模拟熔化存在的过热现象,通过晶体的现代熔化理论,对FeO的分子动力学模拟熔化温度进行了修正,获得了高温高压下FeO正确的熔化温度.因此,为常压下利用壳层模型分子动力学研究物质熔化提供了一种较好的方法,该方法亦可进一步推广应用到其它物质的高压熔化研究工作.  相似文献   

13.
针对生活水箱内封装相变材料现有强化换热方法(如添加翅片或膨胀石墨)会导致蓄能密度降低与石墨沉降等问题,提出在不添加外物的基础上,对当前水箱中应用最为广泛的圆柱型封装结构进行优化改进,通过减小其底面/顶面半径比形成侧壁面倾斜的倒圆锥型结构,使得固态相变材料在重力作用下自然沉降时可充分与面积占比较大的侧壁面发生接触熔化,从而实现相变材料熔化性能的提高.为探究倒圆锥型封装相变材料熔化性能,建立相应熔化传热模型,并通过可视化实验进行验证.在该模型的基础上,对倒圆锥型和圆柱型结构封装相变材料的熔化性能进行了对比和分析.结果显示在相同体积(1.74e-04 m3)和高度(0.055 m)下,倒圆锥型结构封装相变材料完全熔化时间为2520 s,与圆柱型结构相比缩短了690 s,熔化性能提高了21.5%.倒圆锥型结构封装相变材料熔化过程中,除接触熔化外液态相变材料的自然对流也对熔化性能有显著影响,且侧壁处形成的Rayleigh-Bernard环流会削弱相变材料接触熔化性能.此外,发现在自然对流与接触熔化共同作用下,正圆锥型结构封装相变材料熔化性能与倒圆锥型结构相比更强,提高了16.7%.在实际应用中可将正圆锥与倒圆锥型封装结构结合使用,在有效利用空间的基础上实现蓄热量和蓄热效率的同时提高.  相似文献   

14.
采用Fluent软件对石蜡的熔化过程进行数值模拟,并将其同实验结果进行对比,得到了一组可以较好模拟石蜡相变熔化过程的参数。结果表明,数值模拟结果与实验结果有较好的一致性,网格密度对于模拟石蜡相变熔化过程的影响较小。石蜡的相变熔化过程可以分为两个阶段:顶部熔化、底部方腔侵蚀的第一阶段,未熔化石蜡下降重新分配的第二阶段。不同位置模拟的温度-时间曲线与实验结果的重合性不同,靠近气液界面处的结果较好。  相似文献   

15.
采用分子动力学方法和量子修正的Sutton-Chen(QSC)多体势研究了不同尺寸的银纳米线的熔化动力学过程.模拟结果表明;银纳米线的熔点要比银的体材料的熔点低得多,并且与纳米线的直径的倒数成线性关系,当纳米线的直径越大时,其熔点越高,表现出了明显的尺寸效应.银纳米线的熔化过程首先从表面开始,并逐步向内部发展,直至核心区域.当温度高于熔点时,银纳米线逐渐熔化、断裂,最后形成球形团簇.  相似文献   

16.
17.
用分子动力学方法,模拟了三种具有壳对称构型,含309个原子的钯金属团簇的熔化行为。钯原子间作用势采用Sutton-Chen多体作用势能。三种壳对称构型分别为正八面体(Cubooctahedron),正十面体(Decahedron)和正二十面体(Icosahedron)。通过对升温过程中的热力学性质的分析,得到了钯金属团簇的熔点。不同构型钯金属团簇的熔点有细微差别,并且都远低于块状钯金属的熔点。进一步分析三种钯金属团簇升温过程中的结构和动力学性质,在分子水平上讨论了构型对熔化行为的影响。  相似文献   

18.
相变材料接触熔化的研究现状与发展   总被引:3,自引:0,他引:3  
研究固液相变过程的传热特性与机理,是当前传热传质学的重要课题之一,而相变材料的接触熔化问题有其自身的特殊性和复杂性.文中回顾了近18年来有关加热体与固体相变材料表面间接触熔化的研究,对这一领域的研究发展状况作一述评,并简要介绍作者最近取得的一些成果.内容包括各种形式的接触熔化,可归纳为:在接触形状上可以有凹、凸与平的面,而接触的周长可以是矩形、圆形、椭圆形、抛物线形与弧形曲线;相对运动的类型有固体相变材料在加热容器内熔化,加热体通过熔化固体介质的运动,滑动接触与滚、转动接触;引起接触熔化的原因有温差、压力差、摩擦与粘性热.  相似文献   

19.
研究了冲击载荷作用下金属薄膜表面裂纹扩展的微观机制,采用分子动力学方法对Cu薄膜进行模拟计算,求得冲击载荷作用下带有表面裂纹模型的系统动能、应力、应变及微观结构变化图.当系统从压应力转变为拉应力状态时,裂纹上的原子获得较大动能,裂纹尖端原子开始发生溅射,继而晶格内部出现空位.当拉应力达到364385MPa时,空位扩大形成裂尖钝劈现象,裂纹发生扩展.结果表明:在高速冲击载荷作用下,金属薄膜裂纹扩展主要原因是系统能量和应力的变化使得微裂纹尖端出现钝劈损伤.  相似文献   

20.
新锆合金的相变温度   总被引:3,自引:0,他引:3       下载免费PDF全文
采用DTA及膨胀法测量新锆合金N18及N36合金的相变温度。测试结果表明,N18合金的α→(α β)的相变温度在776-785℃间,其(α β)→β的相变温度在930-987℃。在580℃左右,有第二相析出。对N36合金,其α→(α β)相变温度约为725℃,(α β)→β的相变温度约为910℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号