首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
令X表示复Banach空间,B(X)为X上的有界线性算子的Banach代数,C(X)为定义在X中的闭算子全体_∞表示扩充的复平面_∞=∪{∞}。设T∈C(Z),其定义域记为D(T),e(T)表示T的豫解集:λ∈ρ(T)(λI-T)~(-1)∈B(X),σ(T)=\ρ(T)与σ_∞(T)=_∞\ρ(T)分别为T的谱与扩充谱。总假定ρ(T)≠φ且∞ρ(T)。(T)表示在σ_∞(T)的某领域上解析上的函数所构成的集合。对于给定的α∈ρ(T),记  相似文献   

2.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

3.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

4.
设X是复Banach空间,C(X)为X上封闭线性算子族,表示封闭复平面C_∞之闭子集族。对T∈C(X),以D(T)我示T之定义域。若X之闭子空间Y使得T[Y∩D(T)]Y。则称Y是T之不变子空间,T之不变子空间Y称为谱极大空间,若对T之另一不变子空间Z,从σ(T|Z)σ(T|Y)可推得ZY。设Y是T之不变子空间,T在Y上的限制算子记作T|Y或T_Y,X关于Y的商空间记作X~Y或X,T在商空间X上诱导的商算子记作T~Y或简记为T。其中  相似文献   

5.
本文给出 Banach 空间上闭线性算子的部局谱映射定理以及与其有关的几个结果。我们以 C_(?)表示扩充复平面,X 表示复 Banach 空间,丁表示 X 上以(?)(T)为定义域的闭线性算子,将 T 的预解集ρ(T)和谱σ(T)均视为 C_x 的子集,并且假定ρ(T)非空.当 T 有单值扩张性时,对每个 x∈X,定义 T 关于 x 的局部预解集为  相似文献   

6.
本文给出谱位于 Jordan 曲线上的一类闭算子是可分解算子的充分条件.设 C 和 C_∞分别表示复平面和扩充复平面.和分别表示 C_∞的闭子集族和 C 的紧子集族.X 表示复 Banach 空间.(X)和(X)分别表示 X 上的闭线性算子族和有界线性算子族.(T)表示算子 T 的定义域.ρ(T)和σ(T)分别表示 T 的预解集和  相似文献   

7.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

8.
C.Apostol[1]证明了下面的定理A.设T为作用在复Hilbert空明月上的算子,σ为ρ_(S-F)~S(T)的有限子集,那未存在T的不变子空间Y,Z,使得(i)Y∩Z={0},Y+Z=H,dim Z=sp dim(β;T);(ii)σ(Tz)=σ,sp dim(λ;Tz)=sp dim(λ;T),λ∈σ;(iii)ρ_(S-F)~r(T)=ρ_(S-F)~r(F)∩σ。本文的目的是把上术定理推广到Banach空间。  相似文献   

9.
本文讨论 Banach 空间上的闭可约化算子,闭谱算子及闭可分解算子的谱特征,并给出了 Banach 空间上的闭算子成为闭谱算子的充要条件。设 X 是复 Banach 空间,C(x)表示 X 中的闭线性算子全体,C_∞表示扩充复平面。定义1 T∈C(X)称为完全谱可约化算子,如果对 C_∞的每个开子集或闭子集ι及相应的谱子空间(?),存在 T 的不变子空间 M,使得  相似文献   

10.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

11.
设 C_∞表示扩充复平面,X 表示复 Banach 空间,T 表示以(T)X 为定义域的闭线性算子,由于本文主要研究无界闭线性算子,故将 T 的预解集 P(T)及谱σ(T)均视为 C_∞的子集,并假定 P(T)非空.定义1.设 T 是(T)X 为定义域的有单值扩张性的闭线性算子,T 称为封闭强拟可分解算子,如果对σ(T)的任意有限开复盖.{G_i}_i~=i及 T 的任意谱极大空间 Y,存在  相似文献   

12.
本文讨论算子组的联合谱的配置问题.我们所讲的联合谱是指Taylor联合谱;H、G表示Hilberr空间. 引理1 设X是—Banach空间,A=(A_1,…,A_n)■B(X)是一交换算子组,则联合谱σ(A,X)是紧集,且σ(A,X)■σ(A_1)x…xσ(A_n). 引理2 设 A∈B(H),C∈B(H,G),则存在一算子B∈B(G,H),使得σ(A)∧σ(A—BC)=θ的充要条件是对某正整数m,算子  相似文献   

13.
设A∈B(ye),B∈B(k),C∈(B)((k),(ye))给定,对X∈B((ye),(k))定义Mx=(AXCB)ye( )k→ye( )(k).在一定条件下刻画集合∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx),其中σl(T)和σr(T)分别表示算子T的左谱和右谱.利用了算子矩阵的分块技巧和算子分块的几何结构.在C是闭值域的条件下,完全刻画了∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx).此刻画在缺项算子矩阵的谱的研究中是新的结果,应用该刻画可以得到若干已知结论.  相似文献   

14.
算子矩阵:单值扩张性与Browder谱   总被引:1,自引:0,他引:1  
设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以MC记XY上的算子{A C/0 B}.利用局部谱理论的工具给出关于A,B成立σ*(Mc)=σ*(A)∪σ*(B)(σ*∈{αb,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件.  相似文献   

15.
设T是复Hilbert空间H中的稠定闭算子,用ρ_(S-F)(T),C,ρ_(S-F)~s(T)分别表示T的半—弗雷德霍姆域及该域中T—正则点,T—奇异点的集合,用S表示T的Moore-Penrose逆。作者以(M—P)逆为工具证明了:如果O∈ρ_(S-F)(T),G={μ∈C:0<|μ|<‖S‖~(-1),那么Gρ_(S-F)~r(T)。因此ρ_(s-f)(T),ρ_(S-F)~r(T)均为开集,而ρ_(S-F)~s(T)在ρ_(S-F)(T)中无极限点。  相似文献   

16.
设C是复数域, H是C上无穷维可分的 Hibert 空间,B(H)及K(H) 分别表示H上有界线性算子和紧算子的全体.若T∈B(H),记σ(T),σa(T),σea(T)及σja(T) 分别表示T的谱, 近似点谱,本质近似点谱及联合近似点谱[1,2].  相似文献   

17.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

18.
研究了Hilbert空间上有界线性算子T的Weyl型定理的判定方法及等价性.根据一致Fredholm指标性质,定义了一种新的谱集2σ(T),通过该谱集和拓扑一致降标集ρτ(T)之间的关系,证明了:算子T满足Browder定理当且仅当ρτ(T)bρ(T)∪1σ(T)∪2σ(T);T满足Weyl定理当且仅当0π0(T)ρτ(T)bρ(T)∪1σ(T)∪2σ(T),其中bρ(T)={λ∈C:T-λI为Browder算子},1σ(T)为本质逼近点谱的一种变化,0π0(T)为谱集中孤立的有限重的特征值的全体;算子T与T*均满足a-Browder定理当且仅当ρτ(T)aρb(T)∪2σ(T)∪intSσF(T)∪{λ∈C:des(T-λI)∞},其中aρb(T)={λ∈C:T-λI为上半Fredholm算子且有有限的升标},SσF(T)和des(T)分别表示算子T的半Fredholm谱以及降标.  相似文献   

19.
设H1,H2和H3为无穷维可分的Hilbert空间,对于给定的A∈B(H1),B∈B(H2)和C∈B(H3),定义3阶上三角缺项算子矩阵M(X,Y,Z)=(A X Y0 B Z0 0 C.).给出缺项算子矩阵M(的亏谱和近似点谱的扰动结果.  相似文献   

20.
设H为复的无限维可分的Hilbert空间,B(H)为H上的有界线性算子的全体。若σ(T)\σ_w(T)=π00(T),则称T∈B(H)满足Weyl定理,其中σ(T)和σ_w(T)分别表示算子T的谱和Weyl谱,π00(T)表示谱集中孤立的有限重特征值的全体。首先给出了Hilbert空间上有界线性算子WeylKato分解的定义,并由Weyl-Kato分解的性质定义了一种新的谱集,利用该谱集刻画了算子函数演算满足Weyl定理的充要条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号