首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
令G=(V,E)是一个图,点集S V,如果满足N[S]=V(G)(或N(S)=y(G)),则称点集S是一个控制集(或伞控制集).一个连通图G如果满足:对任何不相邻于一次点的v点,G-v的全控制数小于G的全控制数,则称图G是一个γt-临界图.给出连了通无爪3-正则图G的控制数满足γ(G)≤3-n.同时找到一个直径是2的4-γt-临界图.  相似文献   

2.
设G=V(V,E)是一个简单无向图.一个点悬挂三个一度点的图称为爪图,D图是一个三角形其中两个点各悬挂一条长为2的路.如果图G的任何导出子图都不同构于爪图也不同构于D图,则称G为无爪和无D图.设S是V的非空子集,如果不在S的点一定与S中的某个点相邻,则称S为G的控制集.如果G中的点一定与S中的某个点相邻,则S称为G的全控制集.最小全控制集包含顶点的数目称为全控制数.给出了当G是N阶连通的无爪和无D图时全控制数紧的上界.  相似文献   

3.
G(V,E)是一个图且D包含于V,如果N[D]=V,则称D为图G的控制集,进一步,对任一个控制集D1而言均有γ((D))≤γ((D1))成立,则称D为图G的小控制集,且小控制数γL(G)=min{|D|:D包含于V且D是G的一个小控制集}。如果点集S包含于V,A↓X∈V均有N(X)∩S≠φ或∪↑x∈SN(x)=V,则称S为图G的全控制集,且全控制数γ1(G)=min{|S|:S是G的一个全控制集}。  相似文献   

4.
G(V,E)是一个图且D包含于V,如果N[D]=V,则称D为图G的控制集,进一步,对任一个控制集D1而言均有γ((D))≤γ((D1))成立,则称D为图G的小控制集,且小控制数γL(G)=min{|D|:D包含于V且D是G的一个小控制集}。如果点集S包含于V,A↓X∈V均有N(X)∩S≠φ或∪↑x∈SN(x)=V,则称S为图G的全控制集,且全控制数γ1(G)=min{|S|:S是G的一个全控制集}。  相似文献   

5.
研究一些特殊图类的弱控制多项式.令图G=(V(G),E(G))是一个简单连通图,若对任意v∈V(G),存在u∈V(G),使得uv∈E(G)且d(u)≥d(v)成立,则称v弱控制u.设W(G)?V(G),如果对任意u∈V(G)W(G),存在v∈W(G),使得v弱控制u,则称W(G)为图G的一个弱控制集.含点数最少的弱控制集称为最小弱控制集,最小弱控制集中所包含点的个数称为图G的弱控制数,记为γwd(G).图G的弱控制多项式为WD(G,x)=■Wd(G,j)xj,其中Wd(G,j)表示图G中阶为j的弱控制集的个数.  相似文献   

6.
令G=(V,E)是一个图,M是边集E(G)的子集,如果有e∈E(G)/M,e至少与M中一条边相连,则称M为图G的边控制集,进一步,若M是匹配,则称M为图G独立边控制集,本文给出关于边控制集的一些结论。(1)设图H,S是两中连勇图,且H,S∈ж,γe(S)=1,M和M′={uv}分别是图H和S的唯一最小边控制集,其中S是图1中的(G1,G2,G3,G4)四个图之一,对任何点x∈V(S)={u,v},y∈V(H)-V(M),令G=H(y=s)S,则G∈ж,(2)如果连通图G≠K2,G∈ж,γe(G)=k,则存在G的两个连通于图H,S和某两个正整数l,m使H∈ж,S∈ж,且γe(H)=k-l,γe(S)=l,G≌H(yi=xi)S,其中l≤i≤m.  相似文献   

7.
对于图G内的任意两点u和v,在u和v之间的最短路称为u-v测地线.I(u,v)表示位于u-v测地线上所有点的集合,对于S V(G),I(S)表示所有I(u,v)的并,这里u,v∈S.如果I(S)=V(G),那么称S是G的测地集;并把测地集的最小基数称为G的测地数,记为g(G).文章主要研究Cn×K3的测地数.  相似文献   

8.
连通、几乎局部连通拟无爪图是完全圈可扩的   总被引:3,自引:0,他引:3  
G是一个图,B(G)表示G中所有局部不连通的点构成的集合。如果B(G)是独立集,并且对任意v∈B(G),Eu∈V(G),使G[N(v)∪{u}]连通,则称G是几乎局部连通的。如果G中所有爪心构成的集合D(G)是独立集,并且对任意v∈D(G),G[N(v)]是强2-控制的,则称G是拟无爪图。本文证明:连通、几乎局部连通的拟无爪图是完全圈可扩的。  相似文献   

9.
设D V是图G=(V,E)的任意一个对控制集,如果一个函数f:V→{-1,0,1}满足条件1)对任意点v∈D,有f(v)=1,对任意点v∈V-D,有f(v)≤0,2)对任意点v∈V,均有f(N[v])≥1,则称函数f为图G的负对控制函数。负对控制函数f的重量f(V)是V中所有点的函数值之和,图G的负对控制数γp-(G)=min{f(V)|f是图G的负对控制函数}。本文研究一些图的负对控制数。  相似文献   

10.
在一类限定3-正则图中:β≥ n/3   总被引:3,自引:3,他引:0  
G(V,E)是一个图。如果点集I是V的子集且<I>是空图,则称I是独立集,如果点集X是V子集且N[X]=V,则称X是控制集。如果点集I是V的独立集且又是控制子集,则称I是独立控制集,即极大独立集,β(G)=max{|I|I是G的独立集},称β(G)是图G的独立数。在不发生混淆的情况下,用β表示图G的独立数,可以证明:在限定3-正则图中,β≥n/3,其中n是图的阶。  相似文献   

11.
强保交换映射的一个注记   总被引:1,自引:0,他引:1  
设R是素环, δ是R上的广义导子, m,n,p∈N. 利用广义恒等式理论, 在6  (m,n)或p=1的条件下, 证明了对任意的x,y∈R, [δ(x
),δ(y)]=[xm,yn]p当且仅当δ(x)=x或δ(x)=-x, 且m=n=p=1.  相似文献   

12.
设N是复可分Hilbert空间H上的套,τ(N)是与套N有关的套代数,Δ是τ(N)上的(α,β)-双导子.利用函数恒等式理论,在0+的维数dim0+≠1或H⊥-的维数dimH⊥-≠1的条件下,证明了对任意的U,V∈τ(N),套代数τ(N)上的每个(α,β)-双导子Δ都具有形式Δ(U,V)=A[U,V]T-1.  相似文献   

13.
设A⊆B是具有单位元的交换环的扩环, x是环B上的未定元, R:=A+xB[[ x]], S是环A的一个乘性子集。证明了若S是A的非零因子的乘性子集且对任意的s∈S,(∩snA,n≥1)∩S≠Ф,则R是S-Noether环当且仅当A是S-Noether环, B是S-有限A-模。
                相似文献   

14.
如果对任意的f(x)=a0+a1x, g(x)=b0+b1x∈R[x], f(x)g(x)=0蕴含所有aibj∈J(R), 则环R称为线性J-Armendariz环(简称LJA环). 其中: i,j∈{0,1}; J(R)是R的Jacobson根. 考虑LJA环的性质及与其他相关环类的关系, 给出了2-primal环的无限直积非2-primal环的简单例子, 并证明了Koethe猜想有肯定解当且仅当任意NI环的多项式环是LJA环.  相似文献   

15.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

16.
通过引入半交换自同态的概念, 研究具有半交换自同态的环(简称α-sc环). 对任何a,b∈R, 如果α(a)b=0, 有aRα(b)=0, 则环R的一个自同态α称为半交换的.
给出α-sc环与相关环的关系及α-sc环的一些扩张性质, 证明了: 1) 设α是约化环R的自同态, 则R是α-sc]环当且仅当R[x]/〈xn〉是α-sc环, 其中〈xn〉是由xn生成的理想, n为任何正整数; 2) 设α是环R的自同构, R是对称的右Ore环, 则R是α-sc环当且仅当R的经典右商环Q(R)是α-sc环.  相似文献   

17.
设G是一个简单图,f为G的一个E-全染色.对任意点x∈V(G),用C(x)表示在f下点x的色以及与x关联边颜色所构成的集合.若u,v∈V(G),u≠v,有C(u)≠C(v),则f称为图G的点可区别E-全染色,简称VDET染色.图G的VDET染色所用颜色数目的最小值称为图G的点可区别E-全色数(简称为VDET色数),记为χevt(G).利用分析法和反证法,讨论并给出完全二部图K3,n(3≤n≤17)的点可区别E-全色数.  相似文献   

18.
给定域K的单代数扩域K(θ)上可解多项式代数A=K(θ)[a1,…,an], 设A的子代数A0=K[a1,…,an]是K上可解多项式代数. 通过考察A与多项式代数A0[x]之间的结构关系, 给出将A中左Grobner基的计算转换为A0[x]中左Grobner基计算的有效方法.  相似文献   

19.
合成图的点可区别正常边色数   总被引:1,自引:1,他引:0  
通过将图G和H的合成图G[H]分解成一个直积图G□H和一个二分图Z的边不交并的方法, 得到了χ′s(G[H])≤χ′s(G□H)+χ′(Z),其中χ′s(G)表示G的点可区别正常边色数.  相似文献   

20.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号