首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为探明不同线间距下600 km/h高速磁浮列车明线交会时的气动特性,基于三维、非定常、可压缩的N-S方程和SST k-ω湍流模型,采用重叠网格技术,分析列车明线交会时的车身周围流场结构、列车交会压力波和列车侧向力,通过动模型试验来验证数值模拟方法的准确性。研究结果表明:在不同线间距下,列车交会时的车身周围流场分布特征相似,随线间距增大,列车尾涡展向角逐渐增大,两交会侧车身之间流场的速度和压力不断减小;不同线间距下的列车压力波变化规律一致,压力波幅值与列车运行速度的二次方近似呈正比,当线间距由5.1 m分别增大至5.6 m和6.1 m时,压力波幅值分别减小28.2%和42.4%,且增大线间距对列车压力波正波缓解作用比负波的大,头波的缓解作用比尾波的大;列车交会过程中头车侧向力幅值比尾车和中间车的幅值大,增大线间距对尾车侧向力的缓解作用比头车和中间车的大,当线间距由5.1 m增大至6.1 m时,头车、中间车和尾车的侧向力幅值分别减小33.8%、34.1%和35.7%。  相似文献   

2.
基于三维、可压缩、非定常N-S方程和k-ε双方程湍流模型,对不同主型线头部列车隧道交会气动效应进行数值模拟,得到列车在隧道内交会时的侧向力、总阻力以及隧道壁面压力变化。研究结果表明:隧道壁面和列车表面压力测点数值计算结果与动模型实验、实车试验结果较吻合,相对误差均在5%以下;单拱型列车隧道交会气动性能略优于双拱型;纵剖面型线对列车隧道交会气动力影响较大,纵剖面型线从下凹变化到上凸,头车、中间车和尾车侧向力幅值系数分别增加11.2%,14.0%和23.7%,最大总阻力系数增加7.2%;水平剖面型线从最宽外形变化到最窄外形,头车、中间车和尾车侧向力幅值系数分别增加3.4%,2.4%和4.6%,最大总阻力系数减小4.0%;改变头部主型线对隧道壁面压力变化影响较小,最大相对误差为1.7%。  相似文献   

3.
在合武(合肥—武汉)铁路上进行250km/h等级隧道空气动力性能实车试验;对货物列车单列过隧道及货物列车与CRH2高速动车组在隧道内交会时,集装箱箱体表面的压力变化历程及所受的气动力进行测试。测试结果表明:当2列车在隧道内交会时,交会压力波与隧道内的压力波叠加,造成隧道内列车交会产生的压力变化幅值远大于明线交会产生的压力变化幅值;车体交会侧压力变化幅值比非交会侧压力变化幅值大16%,使得车辆受到较大侧向力作用;双层集装箱车辆进入隧道口时,空气压差阻力急剧上升,之后又逐渐回落;在隧道内运行的平均阻力约为明线运行时阻力的1.56倍,货物列车120km/h和动车组250km/h在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2s平均倾覆系数分别为0.063和0.067。  相似文献   

4.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

5.
采用三维、可压缩、非定常N-S方程的数值计算方法,对8辆编组的动车组在20 m/s横风下以250 km/h速度交会时列车表面瞬变压力和车体所受气动力及力矩进行分析,并采用间接验证方法,将风洞实验、动模型实验得到的结果分别与数值模拟结果进行对比。研究结果表明:间接验证方法下所得气动效应实验结果和数值模拟结果变化规律一致,压力幅值相对误差在5%以内;动车组横风下交会时,车体头、尾处测点压力差别较大,中部位于同侧测点压力差异较小,同一高度、不同纵向测点的压力变化波形及幅值基本一致,车体顶部测点压力始终为负;对于车体所受横向气动力及倾覆力矩,头车比中间车和尾车的大,背风车比迎风车的大;随着横风风速的增加,列车所受横向气动力及倾覆力矩峰值也迅速增加,严重威胁着动车组的安全运行。  相似文献   

6.
基于三维、非定常、可压缩雷诺时均N-S方程和标准κ-ε双方程湍流模型,采用滑移网格方法,对列车通过隧道进入风区后,风-车-桥-地形耦合作用下高速列车气动性能进行模拟。模拟线路周围的复杂地形地貌,针对8节编组的和谐号高速列车以350 km/h速度在强侧风复杂地貌下的运行进行研究。研究结果表明:地形显著改变沿线风速分布情况,并通过改变风速来影响列车气动性能;列车在驶出隧道突入风区时气动力急剧增加。此后,列车沿风区线路运行时,所受侧向力变化明显,其中头车侧向力变化最小,尾车最大;与侧向力相比列车升力变化不明显,头车升力变化最大,尾车升力变化最小。通过对沿线风速的监测,可知地形对沿线风速改变显著。  相似文献   

7.
快速集装箱平车在明线和隧道内会车时的气动性能   总被引:1,自引:0,他引:1  
利用三维、可压、非定常N-S方程,采用滑移网格技术对我国正在研制的160 km/h快速集装箱专用平车与动车组分别在明线和隧道内会车时的气动性能进行数值模拟.研究结果表明:集装箱平车以160 km/h的速度与动车组等速交会时,在隧道内会车时车载集装箱中部压力变化幅值是在明线会车时的3.46倍;在明线和隧道内会车时,集装箱列车受到的侧向力和侧滚力矩均与交会列车运行速度近似成平方关系;因隧道内压力分布一维特性较强,集装箱平车交会侧与非交会侧压力相差并不大,因此,在明线会车时集装箱平车受到的侧向力和侧滚力矩均比隧道会车时的大,大约是其1.1倍.  相似文献   

8.
对400 km/h的16编组列车在不同净空面积(90,95,100,105和110 m2)隧道交会气动载荷进行数值研究,并结合压力舒适性标准对隧道净空面积提出建议。采用RNG k-ε湍流模型和滑移网格法进行数值模拟,并通过动模型实验进行验证。研究结果表明:16车编组的高速列车以速度400 km/h在净空面积为100m2的标准双线隧道内交会时,从头车到尾车方向上,车外表面的平均压力峰峰值不断减小,车内的平均压力峰峰值不断增大;综合考虑现有高速列车气密性与舒适度标准,运行速度为400 km/h的长编组高速列车双线隧道净空面积推荐采用100 m2。  相似文献   

9.
采用三维、可压N-S方程、k-?双方程湍流模型和滑移网格技术,对不同的流线型长度、头部型线列车明线交会压力波及气动力的关系进行计算分析。研究结果表明:交会压力波头波幅值数值计算结果与实车试验结果较吻合,两者相对误差为4.9%;当列车流线型长度从8 m增大至12 m时,交会压力波、侧向力、侧滚力矩幅值分别减小27.0%,39.2%和36.2%;头部主型线中,水平剖面型线对交会气动性能的影响最大,当水平剖面型线斜率由0.076增大到0.184时,交会压力波、侧向力、侧滚力矩幅值分别增大12.1%,7.3%和8.5%;纵剖面型线对列车交会气动性能的影响较小,当斜率从0.505增大到0.713时,交会压力波、侧向力和侧滚力矩幅值分别增大1.90%,0.65%和0.89%;当横截面型线斜率从0.194增大到0.235时,交会压力波、侧向力和侧滚力矩幅值分别增大4.1%,3.1%和4.0%。  相似文献   

10.
为了得到底部结构对列车流场及气动阻力优化规律的影响,通过计算流体力学和正交试验设计分析的方法,研究真实复杂车体的底部流动和尾迹特征,得到了复杂车体气动阻力优化规律.结果表明,尾车鼻尖静压系数在底部结构影响下降低了0.06,尾车流动分离提前,两反对称尾涡核间横向距离增大,尾涡间夹角增大.头型概念设计时的拓扑简化车体模型可以作为真实复杂车体的气动阻力优化设计模型,但考虑底部结构使得头车参数优化的极差值减小、尾车参数的优化极差值增大.头车阻力优化重点为转向架周边结构,尾车阻力优化对流线型长度参数更加敏感.  相似文献   

11.
运用滑移网格技术,选用工程上常用的k-ε双方程湍流模型,对横风环境下高速列车出隧道口时的瞬态空气动力特性进行数值模拟,得到不同风速、不同车速下列车受到的瞬态风荷载。计算结果表明:车体所受的瞬态风荷载在列车出隧道口的过程中急剧增大,随着列车逐渐脱离隧道而趋于常数;对车辆安全影响较大的侧向力、侧滚力矩中,头车受到的气动力变化幅值最大、尾车最小,中间车居中;列车出隧道过程是车体周围流场压力不断上升的过程;车体水平中心截面上的静压系数曲线在车头处存在1个大2个小共3个峰值;随着列车的运行,其中迎风面的第2峰值逐渐增大超过原最大峰值,而背风侧第2峰值基本保持不变。  相似文献   

12.
搭建列车空气动力学在线实车高精测试平台,对列车通过隧道及隧道交会工况下的压力波特性进行实车测试;探究运行速度、隧道长度、阻塞比、编组长度、交会位置等因素对隧道压力波的影响规律;根据隧道内压缩波、膨胀波在隧道内传播、反射、叠加的原理,推导出隧道通过及隧道交会工况下,最不利单线隧道长度、最不利双线隧道长度、最不利交会位置、最不利编组长度等计算公式。研究结果表明:车体表面压力变化幅值与列车速度的平方成正比;车内压力幅值与列车速度的n次方成正比,n的范围为1.3~1.8,n随着隧道长度的变化而变化;研究结果可为高速列车在隧道内运行时的安全性指标提供了压力波评判依据。  相似文献   

13.
高速列车侧风效应的数值模拟   总被引:5,自引:1,他引:4  
在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SSTk-ω两方程湍流模型和有限体积法,对某型高速列车以350 km/h的速度在25 m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.  相似文献   

14.
高速列车的转向架区域是气动减阻研究的重点.通过样条曲线方法建立了高速列车底部结构的7参数化模型,采用计算流体力学及超拉丁立方抽样试验设计方法,研究了底部结构参数对高速列车气动阻力的影响规律.结果表明:底部结构参数对于三车总阻力、头、中、尾各节车气动阻力的影响分别为27%、37%、39%和22%,三车气动阻力对裙板高度、排障器厚度、舱前缘倒角最为敏感.但头、中、尾车影响规律不同于三车,有必要考虑对头、中、尾三车底部结构分别进行气动设计,以达到最优的减阻效果.底部结构参数主要影响列车底部平均流速改变底部结构所受气动阻力,进而影响高速列车气动阻力.  相似文献   

15.
采用重叠网格法,基于SST k-ω两方程的DDES湍流模型,研究编组长度对高速磁悬浮列车/隧道耦合气动特性的影响。采用动模型试验结果对数值仿真方法进行验证,将3车编组的动模型试验所得测点压力与相同编组的仿真试验所得测点压力进行对比。分析3车编组高速磁浮列车以速度500、550和600 km/h通过隧道时车体表面、隧道壁面压力变化基本规律,在此基础上研究3车编组、5车编组和8车编组形式对高速磁浮列车/隧道气动特性的影响,并绘制瞬变压力波系传播的马赫波图,揭示编组长度导致测点压力变化差异的原因,得到高速磁浮列车编组长度对隧道出口微气压波的影响规律。研究结果表明:高速磁浮列车表面、隧道壁面压力幅值与车速呈正相关关系;当编组长度增加时,车/隧表面的压力随时间的变化趋势基本一致,但正、负压幅值及压力峰峰值明显增大:当磁悬浮列车以速度550 km/h通过长度为500 m、截面积为140 m2的隧道时,5车编组与8车编组的车体表面最大压力峰峰值比3车编组分别增加12.4%和8.5%,隧道表面最大压力峰峰值比3车编组分别增加49.6%和38.9%,因此,在隧道长度一定时存在最不利...  相似文献   

16.
针对列车高速驶入隧道时流场的三维、非定常及可压缩湍流等特性,建立了精细化的隧道-列车-空气三维CFD数值模型,对比分析洞口有无横风条件下列车驶入隧道过程中车体周边的瞬态流场结构、压力分布,并研究横风条件下车体的5项气动荷载(气动横向力、气动升力、倾覆力矩、偏航力矩和点头力矩)指标的瞬变特性以及风速和车速变化对其最大瞬变幅值的影响情况.研究结果表明:当列车在横风环境下驶入隧道,洞外部分车体两侧流场结构和压力分布差异显著,而洞内部分差异较小,从而引发列车进洞前后车体压差突变;列车在进洞过程中,车体的各项气动荷载均存在瞬变效应,且尾车同时呈现出倾覆、"上跳"、"蛇形"摆动以及"点头"等行为;风速变化对尾车偏航力矩变化幅值影响较显著,而车速变化对头车偏航力矩变化幅值影响较显著.  相似文献   

17.
为了给高速列车风洞侧风试验的模型选取提供更多的参考依据,采用计算流体力学(Computational Fluid Dynamics,CFD)方法对不同模型以200km/h速度运行时,在不同侧向风速下的气动力和流场结构进行分析.结果表明:相同侧向风速下,不同的高速列车缩比模型对头车的气动力系数影响不大,可以采用更短编组长度的高速列车模型即1.2车模型(头车+0.2节尾车)代替3车联挂模型对头车的气动特性进行风洞试验研究;考虑到尾车结构对头车末端区域的流场结构和压力分布的影响,高速列车风洞侧风试验中,不建议采用更短编组方式的模型.  相似文献   

18.
列车交会压力波是影响列车运行安全性和乘客舒适性的重要因素之一,因此需对压力波特性展开研究。采用计算流体力学方法数值求解雷诺平均N—S方程,对不同时速和线间距下国产新型高速列车会车过程开展三维非定常仿真,得出了压力波以及侧向力的变化规律曲线。结果表明最大压力波幅值出现在尾车等截面与变截面过渡处的鼻尖高度位置。会车过程中,车体将承受两次排斥力和一次吸引力,这将对列车的稳定行驶产生一定的影响。压力波幅值和列车所受的侧向力均随会车速度的增大而增大,随会车线间距的增大而减小。  相似文献   

19.
基于有限元-无限元理论,建立某型车辆的有限元模型,并对车辆近场监测点、远程监测面及无限元边界面进行设置,利用直接频响方法对头车、中间车及尾车的关键区域在不同频率下的声场特性进行分析。计算结果表面:头车和尾车区域在低频区段时车体顶部平滑区域的声辐射较小,在车体鼻尖及其下方的转向架区域的声压级较大,其中尾车后方区域内的相比头车的声压级水平和声辐射范围偏大,存在明显的流场影响,但在高频区段时其整体声压级均匀且水平较低。中间车区域在低频区段时受电弓区域的声压级水平很高,尤其在碳滑板和底架处尤为明显,其次在转向架区域的声辐射能力也较大,随着频率的提升,其能量也有显著的衰减。研究结果对高速列车的气动声学设计具有一定的参考价值。  相似文献   

20.
200 km/h动车组交会空气压力波试验   总被引:1,自引:1,他引:1  
为确定我国200 km/h动车组与准高速列车交会空气压力波的大小,从而为动车组安全评估提供依据,在广深线上利用瞬态压力测试系统,对其列车交会空气压力波性能进行测试,并对测量结果进行综合分析.研究结果表明在线间距为4 m、动车组运行速度为200 km/h(准高速列车速度为160 km/h)时,准高速列车所受到的压力波幅值为1*!568 Pa,而动车组承受的压力波幅值在1*!400 Pa左右;列车头部外形对列车交会压力波幅值有较大影响,控制车外形流线化程度比动力车的流线化程度好,控制车对准高速车造成的压力冲击波幅值小于动力车造成的压力冲击波幅值;对于目前使用的准高速车辆,动车组以200 km/h的速度与之交会运行是安全的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号