首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对硅微纳米薄膜热导率存在严重尺度效应的问题,提出一种等效边界散射自由程近似的全耗尽绝缘体上硅(FD SOI)金属氧化物半导体场效应晶体管(MOSFET)硅薄膜热导率尺度效应模型。探讨硅材料内声子散射机理,量化考虑束缚态与自由态电子影响的声子弛豫时间,推导得到硅材料热导率解析模型;深入研究声子边界散射机制,近似求解衡量尺度效应的衰减因子,获取等效声子边界散射平均自由程;考虑由粗糙度引起的界面效应,利用Matthiessen规则将硅材料内声子散射与声子边界散射等过程进行耦合,建立起适用于纳米FD SOI MOSFET硅薄膜热导率解析模型,并利用Asheghi原始模型与实验测试数据对等效边界散射自由程近似热导率模型进行了验证。模型计算结果表明,硅薄膜内声子边界散射等效平均自由程约为薄膜厚度的2.5倍。声子边界散射在微尺度与纳尺度声子热传输过程中占据主导地位,决定了硅薄膜内声子超快热传输特性。采用等效边界散射自由程近似的热导率模型能够与Asheghi模型及实验测试数据较好地吻合,更加凸显衰减因子的物理意义以及有效地揭示纳米器件有限空间热导率的尺度效应。  相似文献   

2.
基于蒙特卡洛法的硅纳米线热导率研究   总被引:1,自引:0,他引:1  
声子在纳米尺度下的输运需要考虑量子效应与边界效应,通过解析方法获得其传输特性比较困难,采用蒙特卡洛方法(Monte Carlo,MC)构建了声子在体态硅与硅纳米线结构中的输运模型,简化了边界散射的选择机制与处理方法.在15~1 000 K的温度范围内,对体态硅的热导率进行了模拟,验证了MC模型对本征散射处理方法的正确性,进而模拟了等效直径为22,37与56 nm的硅纳米线在15~315 K温度范围内的热导率,37和56 nm硅纳米线热导率与实验值符合较好,22 nm硅纳米线热导率比实验值偏大.分析认为随着等效半径的减小,声子色散曲线发生改变,迟豫时间减小,声子发生边界散射的频率增加,导致热阻增大.基于以上分析,通过对边界散射迟豫时间的修正,获得了与实验值较为一致的模拟结果.  相似文献   

3.
肖特基势垒金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor FieldEffect Transistor,MOSFET)的电流一般需要通过载流子的费米狄拉克分布对能量积分来计算或自洽迭代数值计算,为降低其复杂性,本文采用若干拟合参数,考虑镜像力势垒降低效应、偶极子势垒降低效应和小尺寸下量子化效应对肖特基势垒高度的影响,给出了环栅肖特基势垒MOSFET一种新的解析电流模型。所提出的电流模型与文献报道实验数据符合较好,验证了模型的正确性,对环栅肖特基势垒MOSFET器件以及电路设计提供了一定的参考价值.  相似文献   

4.
采用磁控溅射掩膜制备工艺,在n型Si衬底上分别制备了底栅型p沟道Cu_2O半导体薄膜场效应晶体管(TFTs).用XRD、SEM、XPS等检测分析方法对不同条件下制备的Cu_2O薄膜的晶体结构、表面形貌、化学成分进行了表征.对O_2通量、退火温度及沟道宽度等因素对半导体薄膜及器件特性的影响进行了对比研究.研究发现,O_2通量是制备Cu_2O半导体薄膜的关键因素,器件I_(DS)电流的绝对值随着栅压的绝对值的增大而增大,具有典型的p沟道增强型场效应晶体管特征.其Ⅳ特性与溅射沉积时间、沟道宽度、退火因素等有关,真空退火处理后有助于提高器件的I_(DS)的绝对值.测试表明,制备的沟道宽度为50μm的典型器件的电导率、电流开关比和阈值电压分别为0.63S/cm,1.5×10~2及-0.6V.  相似文献   

5.
采用有机半导体材料酞菁铜作为有源层,聚四氟乙烯作为绝缘层,制作了两个不同结构的有机薄膜场效应晶体管,一个是底电极结构,另一个是倒置顶电极结构。文章通过对两个器件的电特性进行对比,分析出在倒置顶电极结构下栅压对有机薄膜场效应晶体管中载流子的注入有很大的帮助。  相似文献   

6.
硅双栅MOS场效应晶体管或称MOS场效应四级管(简写为DG—MOSFET′S),是一种超高频、低噪声、增益可控的新型固体电子器件。本文是根据电流连续性原理系统的推证了该器件的物理模型及实验特性。其结果通过电子计算机所计算出的工作曲线与实测都基本与Brown和Barsan等人的一致。故本文认为这是一种比单栅MOS场效应晶体管(简写为SG—MOSFET′S)性能好,应用更加广泛的MOSFET器件。  相似文献   

7.
以环氧树脂(Eproxyresin)为栅绝缘层材料,并三苯(Anthracene)为有机半导体载流子传输层,分别利用旋涂及真空掩蔽蒸发,在以铜为栅极的基底之上成功研制了有机薄膜场效应晶体管(OTFT),经测试得出器件的电子迁移率为2.34×10-2 cm2/(V·s),跨导为0.49 μs.  相似文献   

8.
制备并提纯了酞菁锌(ZnPc)有机场效应晶体管,该薄膜器件以具有大π键的ZnPc作为载流子传输有源层,以自制的热生长SiO2膜层作为晶体管的栅绝缘层,经长链两亲分子十八烷基三氯硅烷(OTS)修饰以后,具有复合双绝缘层的结构.测试结果显示:以此为基础制备的器件具有良好的I-V输出特性,OTS/SiO2复合双绝缘层的器件结构能有效改进有机薄膜晶体管的性能.  相似文献   

9.
硅基互补型金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)场效应晶体管工艺已经发展到了14 nm技术节点,预计将很快到达其极限,需要寻找新的信息器件来延续摩尔定律.由于具备超小尺寸、高迁移率等显著优点,碳纳米管被认为是后摩尔时代最有潜力替代硅作为晶体管沟道的纳米材料之一.经过近20年的研究,基于碳纳米管场效应晶体管的技术已经取得了巨大的进步.本文将回顾碳纳米管场效应晶体管领域的关键性技术,包括N型欧姆接触实现、"无掺杂"CMOS技术、自对准顶栅结构以及尺寸缩减技术等.而且我们将分析碳纳米管晶体管在大规模材料制备以及碳管和电极接触方面存在的问题,并提出可能的解决方案.在此基础上,通过分析实验数据和模拟结果,对碳纳米管电子学的未来发展做出预测和展望,结果表明碳纳米管晶体管的潜力巨大,通过对材料和器件结构进行合理优化,碳纳米管晶体管在性能上可能远远超过硅基半导体对应技术节点的晶体管,成为后摩尔时代极其具有竞争力的信息器件.  相似文献   

10.
对环栅纳米线结构的隧穿场效应晶体管进行建模分析, 给出电流解析模型, 证明隧穿场效应管有良好的亚阈特性。研究发现, 环栅纳米线隧穿场效应管的亚阈值斜率SS的大小与圆柱体硅直径dnw、环栅氧化层厚度tox以及漏电压Vdd的变化规律均成正比, 即圆柱体硅直径dnw、环栅氧化层厚度tox和漏电压Vdd越小, 亚阈区的性能越好。这一模型的研究为场效应晶体管在低功耗电路中的应用打下良好基础。  相似文献   

11.
高k栅介质SOI应变硅肖特基源漏MOSFET结合了应变硅工程、高k栅介质、SOI结构和肖特基源漏四者的优点,是一种实现小尺寸MOSFET的潜力器件.通过求解二维泊松方程建立了该结构的阈值电压模型,模型中考虑了镜像力势垒和小尺寸量子化效应对源漏极的电子本征肖特基势垒高度的影响,在阈值电压模型基础上获得了漏致势垒降低模型.从文献中提取漏致势垒降低的实验数据与模型进行对比,验证了其正确性,随后在此基础上讨论分析了漏致势垒降低和各项参数的变化关系.结果表明,漏致势垒降低随应变硅层厚度的变厚、沟道掺杂浓度的提高和锗组分的增大而增大,随沟道长度的变长、栅介质介电常数的增大、电子本征肖特基势垒高度的提高和漏源电压的增大而减小.适当调节模型参数,该结构可很好的抑制漏致势垒降低效应,对高k栅介质SOI应变硅肖特基源漏MOSFET器件以及电路设计具有一定的参考价值.  相似文献   

12.
高k栅介质SOI应变硅肖特基源漏MOSFET结合了应变硅工程、高k栅介质、SOI结构和肖特基源漏四者的优点,是一种实现小尺寸MOSFET的潜力器件.通过求解二维泊松方程建立了该结构的阈值电压模型,模型中考虑了镜像力势垒和小尺寸量子化效应对源漏极的电子本征肖特基势垒高度的影响,在阈值电压模型基础上获得了漏致势垒降低模型.从文献中提取漏致势垒降低的实验数据与模型进行对比,验证了其正确性,随后在此基础上讨论分析了漏致势垒降低和各项参数的变化关系.结果表明,漏致势垒降低随应变硅层厚度的变厚、沟道掺杂浓度的提高和锗组分的增大而增大,随沟道长度的变长、栅介质介电常数的增大、电子本征肖特基势垒高度的提高和漏源电压的增大而减小.适当调节模型参数,该结构可很好的抑制漏致势垒降低效应,对高k栅介质SOI应变硅肖特基源漏MOSFET器件以及电路设计具有一定的参考价值.  相似文献   

13.
采用非平衡分子动力学方法,基于优化的集成势函数COMPASS力场,预测了室温下(300K)硅纳米薄膜的热导率.模拟结果表明:厚度约4~10nm的硅薄膜的热导率在3.06~7.28 W/(m·K)范围,并且随着膜厚的增加而增大,表现出明显的尺度效应.在所计算的薄膜厚度范围内,硅纳米薄膜的热导率与薄膜厚度呈现近似线性变化的关系.应用气动理论对产生的尺度效应进行了初步的理论分析,当薄膜厚度在几纳米到十几纳米时,有效声子平均自由程与膜厚有关,不再等于体材料的平均自由程.同时也将本文的预测结果与其他研究者采用Stillinger-Weber势所进行的模拟结果进行了比较.为分子动力学方法在低维材料热物性方面的研究提供了有益的参考.  相似文献   

14.
本文讨论了非硅微电子学,即在硅衬底上利用非硅沟道材料实现互补型金属氧化物半导体(Complememaw Metal Oxide Semiconductor,CMOS)集成电路的微电子科学与技术.文章重点综述了高迁移率锗与锗锡沟道金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)以及隧穿场效应晶体管(Tunneling Field Effect Transistor,TFET)的研究进展.锗与锗锡具有比硅(Si)材料高的空穴和电子迁移率且容易实现硅衬底集成,是实现高迁移率沟道CMOS器件的理想备选材料.通过调节锡组分,锗锡材料可实现直接带隙结构,从而获得较高的带间隧穿几率,理论和实验证明可用锗锡实现高性能TFET器件.本文具体分析了锗锡MOSFETs和TFETs器件在材料生长、表面钝化、栅叠层、源漏工程、应变工程及器件可靠性等关键问题.  相似文献   

15.
通过对90K~350K温度下石墨薄膜热导率的数据进行拟合分析,从理论上预测了石墨薄膜热导率随温度的变化趋势.结果表明,当薄膜厚度可与声子平均自由程比拟时,石墨薄膜热导率的尺寸效应比较明显.该尺寸效应归因于薄膜的边界对载热声子散射作用的增强.  相似文献   

16.
采用了一种全新的方法,应用真空沉积技术在弹性的聚二甲基硅氧烷(PDMS)绝缘层上制备了均匀致密的并五苯薄膜.实验结果显示,通过氧等离子体处理和十八烷基三氯硅烷(OTS)气相修饰PDMS绝缘层,对沉积大晶粒的并五苯薄膜进而获得高迁移率的薄膜场效应晶体管有着至关重要的作用.实验中通过优化氧等离子体处理和OTS修饰的条件,在先后经过100 s氧等离子体处理和7 h气相OTS修饰的PDMS绝缘层上,制备并五苯薄膜场效应晶体管,其最高迁移率可以达到0.58 cm2·V-1·s-1.后续实验中在PDMS绝缘层上尝试并成功地制备了柔性的并五苯薄膜场效应晶体管.这一实验结果拓宽了PDMS作为柔性绝缘层可以通过真空沉积技术制备薄膜器件的能力,在未来大规模柔性电子产品的制备和优化中具有巨大的应用潜力.  相似文献   

17.
制备基于单根InAs 纳米线的平面场效应晶体管纳米器件, 测量并研究器件在真空、空气、氮气、氧气、水汽和大气污染成分二氧化氮中的电学特性。与真空中的结果相比, 空气中器件的阈值电压向正栅压方向偏移, 关态电流上升, 开关比下降。空气的主要成分氮气对器件性能没有可分辨的影响; 氧气的影响很弱; 水汽使关态电流上升, 开关比下降, 但使阈值电压向负栅压方向偏移。研究表明, 大气污染成分二氧化氮使器件的阈值电压向正栅压方向偏移, 开关比不变。研究结果表明, 空气对器件性能的影响是水汽和二氧化氮共同作用的结果。  相似文献   

18.
严重的自热效应和浮体效应是绝缘体上硅(SOI)器件的主要缺点.绝缘体上漏源(DSOI)结构的提出就是为了抑制SOI器件中的这两种效应.为了实现DSOI器件结构并且研究DSOI器件的特性,和SOI器件与体硅器件进行对比,采用新型的局域注氧工艺成功地在同一管芯上制作了DSOI、体硅和SOI 3种结构的器件.通过对3种结构器件的电学特性和热学特性的测量比较,证明了DSOI器件成功地抑制了浮体效应,并且大大降低了自热效应.由于DSOI器件漏、源区下方埋氧层的存在,在消除了SOI器件严重的自热效应和浮体效应的同时,保持了SOI器件相对体硅器件的电学特性优势.DSOI器件成功地结合了SOI器件和体硅器件的优点,并且克服了两者的缺点,是一种很有希望的高速低功耗新器件.  相似文献   

19.
采用旋涂法制备了氧化铝栅介质层薄膜.通过XRD和AFM分析表征了薄膜的结晶性和表面平整性.分光光度计测试表明薄膜在可见光范围的平均透射率大于85%.采用MIM结构研究其漏电流密度,在电场强度为1MV/cm时仅为3×10-9 A/cm2,表明可以用作栅介质层.以旋涂法涂覆的a-IZO薄膜为沟道层、旋涂法涂覆的氧化铝为介质层,制备了底栅结构的氧化物薄膜晶体管.测试表明该薄膜晶体管工作在n型沟道增强型模式,器件场效应迁移率为1.4cm2/(V·s),电流开关比约为105,阈值电压为2.2V,显示出相对较好的器件性能.  相似文献   

20.
SiGe SOI p-MOSFET在高频、高速、低功耗、抗辐射方面具有极大的优势。但二氧化硅埋层较低的热导率以及SiGe材料较低的热稳定性,使器件内部自加热效应的减弱或消除成为提高器件温度特性的关键因素。对应变SiGe SOI p-MOSFET温度特性机理进行研究,给出了三种缓解MOS—FET器件内部自加热效应的结构,并对其效果进行对比分析。结果表明:DSOI结构不适宜于低压全耗尽型SOI器件;Si3N4-DSOI结构对自加热的改善幅度较小;Si3N4埋层结构效果最好,尤其在低温领域改善更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号