首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究单介质阻挡放电(SDBD)等离子体激励对平板气膜冷却性能的影响,采用数值求解耦合等离子体电动激励力的Reynolds averaged Navier-Stokes(RANS)方程组的方法,利用已有的实验数据考核了等离子体线性化激励模型和数值求解方法的有效性,获得了6种归一化激励强度、5种归一化激励频率和3种吹风比条件下,存在SDBD等离子体激励时壁面的气膜冷却效率分布及其附近的流场结构,并与无等离子体激励的气膜冷却工况进行了对比。研究结果表明:与无SDBD等离子体激励时相比,施加SDBD等离子体激励显著提升了平板气膜冷却性能,抑制了气膜孔下游肾形涡对的发展,使近壁面流向速度梯度增大、流向速度峰值提升、冷气沿展向及流向的覆盖范围均扩大。当归一化激励强度由40增至140时,平板气膜冷却效率显著提高;当归一化激励强度为100时,中心线处及展向平均的气膜冷却效率的极值分别比无SDBD等离子体激励的工况提高了105%及200%。当归一化激励频率由1.25增至6.25时,平板气膜冷却效率也逐渐提升;与无SDBD等离子体激励的工况相比,当归一化激励频率为3.75时,中心线及展向平均气膜冷却效率极值分别提升了75%及100%。平板气膜冷却性能随吹风比的增大逐渐下降;当吹风比由0.5增至1.0时,壁面中心线及展向平均气膜冷却效率的极值分别降低了23.9%及49.2%。  相似文献   

2.
为研究连续收缩扩张孔的冷却特性,在C3X静叶片上分别建立了连续收缩扩张气膜孔冷却模型、圆柱气膜孔冷却模型和展向扩张气膜孔冷却模型,连续收缩扩张气膜孔每排23个、孔间距为20mm,展向扩张孔每排19个、孔间距为24mm,圆柱孔每排19个、孔间距为24mm。同时,在叶片前部开设了一个U形冷却通道,尾部开设了一个直冷却通道,冷气通过这2个内部冷却通道进入气膜孔。利用ANSYS-ICEM商用软件对上述3种模型进行了结构化网格划分,采用ANSYSCFX商用软件和SST湍流模型进行了数值计算和分析比较,结果表明:连续收缩扩张孔的气膜冷却效率高于圆柱孔和展向扩张孔,在孔口附近和高吹风比下的优势最明显;连续收缩扩张孔使冷气射流在相邻两孔的交汇处形成了类似反肾形涡结构,该涡的强度不大,但具有良好的延续性和较大的冷气覆盖面积;复合冷却时冷气射流脱离壁面的现象更明显,孔口附近总冷却效率低于绝热冷却效率。在连续收缩扩张孔的实际应用中选择偏大的吹风比和更小的入射角可以提高气膜冷却效率。  相似文献   

3.
采用数值方法研究了不同吹风比条件下造型凹坑孔深度及张角对壁面气膜冷却性能的影响,并与常规圆孔进行了对比。研究结果表明:随着凹坑深度的增加,冷却射流沿展向的动量降低,沿周向的动量增大,在壁面的覆盖范围扩展、抬升位置延后,气膜冷却性能得到提升,且提升幅度随吹风比的增加而增大;相比于常规圆孔,最优深度造型凹坑孔(d=2.3D,M=1.5)平均气膜冷却效率在冷却孔下游X/D3区域提高了近500%,在3X/D10区域提高了600%;随着造型凹坑张角的增大,冷却流体在轴向及周向的覆盖范围扩大,附壁性增强,肾形涡的强度及尺度均减小,高温主流与冷却流体的掺混得到抑制,壁面气膜冷却效率明显提高;相比于常规圆孔,张角30°的造型凹坑孔平均气膜冷却效率在3X/D10区域提高了近440%。  相似文献   

4.
为了研究涡发生器高度对气膜冷却性能影响的规律,搭建了气膜冷却实验台,利用热电偶测温获得气膜有效度,采用粒子成像测速(PIV)技术拍摄了流场结构。实验中采用20°单孔射流结构,在主流湍流度为0.4%、吹风比M=1.5的条件下,完成了5种不同高度涡发生器的气膜冷却效果以及流场结构的测量。气膜有效度的测量结果表明,涡发生器能显著提高气膜冷却性能,其高度对气膜冷却性能的影响显著,该影响随着高度的增加先增大后减小,最优高度下平均气膜有效度相对不带涡发生器情况提高了81%。结合PIV流场结果分析可知:反肾形涡对将冷气卷向壁面是涡发生器提高气膜冷却性能的根本原因,但涡发生器高度过低时产生的反肾形涡对强度较弱,不能有效地将射流牵引至壁面;当涡发生器高度过高时则会穿透射流,将部分主流卷入到反肾形涡对中,从而削弱冷却效果。  相似文献   

5.
对介质阻挡放电等离子体激励器进行了参数化分析,考察了诱导速度和功率随信号波形、激励电压、信号频率、电极间距等参数变化的规律,同时采用流场显示方法和PIV技术研究等离子体在静止流场中诱导的涡系结构生长和演化过程.结果表明,等离子体通过诱导产生的起始涡存在3种主要的涡系结构,即裸露电极下游的主涡、裸露电极上游的反向涡以及主涡侧下方的二次诱导涡.进一步分析了主涡和反向涡的产生和发展过程,通过和激励器放电电流波形及放电图像的对比分析,揭示了起始涡的产生机理,同时也证实了介质阻挡放电等离子体产生诱导气流机理的正确性.  相似文献   

6.
为了采用气膜冷却来保护燃气轮机叶片免受高温侵蚀,针对进一步提高气膜冷却效率、减少冷却空气消耗量的需求,提出了带有上游间断肋的气膜冷却结构。采用k-ε湍流模型数值研究了带有上游横向肋结构的气膜冷却性能,分析了横向无间断肋、两侧间断肋、间断数段肋和中间间断肋这4种上游不同横向肋布置方式对气膜冷却流动的影响,比较了4种结构的气膜冷却效率和换热系数。结果表明:横向肋对下游冷气的卷吸能力与肋片长度有关,与肋片的布置方式无关;不同肋片布置方式会产生不同的涡结构,即中心间断肋会诱导主流产生一个与肾形涡旋转方向相反的涡对,从而增加冷却射流的展向扩散,有利于提高下游气膜冷却性能,而两端间断肋会诱导主流产生一个与肾形涡旋转方向相同的涡对,该涡对会进一步抬离冷却射流,降低下游气膜冷却性能;在气膜孔上游布置中心间断肋能提供最高的展向平均绝热气膜冷却效率和实际热降值。  相似文献   

7.
为了探究正弦脉动激励对气膜冷却特性的影响,采用大涡模拟方法,针对具有正弦脉动特征的气膜冷却射流与平板主流的相干机制展开研究,在平均吹风比为0.5和1.5的条件下重点研究脉动频率和幅值对气膜冷却流动传热的影响。研究结果表明:在高吹风比工况下,冷气脉动有助于提高气膜冷却性能,而在低吹风比工况下,作用效果完全相反;增大脉动幅值强化了肾形涡对的卷吸作用,而脉动频率变化的影响则不明显;在正弦脉动下,没有出现方波脉动那样大尺度的起动涡结构;与连续性射流相比,脉动射流可以显著提升气膜孔下游的湍流动能,但随着流向距离增加,脉动射流的影响变弱;功率谱密度分析结果表明,冷气脉动对小尺度涡旋能量的影响较明显。  相似文献   

8.
为揭示气膜抽吸对壁面射流流动与换热的干涉效应,获得壁面射流冷却通道内的流动特性与换热特性,建立了涡轮叶片前缘带气膜抽吸的单通道壁面射流冷却计算模型。采用RANS方法,结合SST k-ω湍流模型,研究了气膜抽吸、射流雷诺数、气膜孔位置和数量等因素对壁面射流内部冷却特性的影响机制。结果表明:气膜抽吸会大幅提高流动结构的稳定性,气膜孔入口的分离涡则会显著提高孔口附近的换热系数;气膜抽吸引起壁面射流流量的降低不利于靶面下游的冷却,但滞止区和通道内的流动损失降低幅度大于气膜孔内的掺混损失,从而使整体流动损失系数降低了4.5%;射流雷诺数的增加会提高换热强度,但对流动结构几乎没有影响;单孔结构中,在前缘滞止线处开孔能够提供最高的气膜流量比,且对前缘内部靶面的冷却效果良好;多孔结构中,双气膜孔结构的流动损失最大,三气膜孔结构的流动损失和换热强度最为均衡。研究结果可为壁面射流冷却结构的气膜孔布置提供依据,为进一步提高壁面射流冷却结构的冷却效果提供参考。  相似文献   

9.
为了研究等离子体气动激励对二维气膜冷却效果的影响规律,基于等离子体气动激励唯象学模型,将等离子体气动激励对冷却气流的宏观作用等效为体积力,通过耦合求解体积力与Navier-Stokes方程,得到了气膜冷却的流场和温度场特性。计算结果表明:气膜缝出口壁面附近冷流经过等离子体气动激励作用后,速度水平分量提高较大,竖直分量提高较小;随着吹风比的增大,气膜缝出口冷流的流量和动量增加,气膜冷却效率增加,但等离子体气动激励对冷却气流的影响减弱,气膜冷却效率增加量减小。施加等离子体气动激励后,在各吹风比下,随着气膜缝倾角的增加,气膜冷却效率逐渐降低;等离子体气动激励等效体积力大小对气膜冷却效果有较大影响,气膜冷却效率随体积力的增大先升高后降低,存在一个最佳等效体积力值。  相似文献   

10.
为了研究等离子体气动激励对二维气膜冷却效果的影响规律,基于等离子体气动激励唯象学模型,将等离子体气动激励对冷却气流的宏观作用等效为体积力,通过耦合求解体积力与 Navier??Stokes方程,得到了气膜冷却的流场和温度场特性。计算结果表明:气膜缝出口壁面附近冷流经过等离子体气动激励作用后,速度水平分量提高较大,竖直分量提高较小;随着吹风比的增大,气膜缝出口冷流的流量和动量增加,气膜冷却效率增加,但等离子体气动激励对冷却气流的影响减弱,气膜冷却效率增加量减小。施加等离子体气动激励后,在各吹风比下,随着气膜缝倾角的增加,气膜冷却效率逐渐降低;等离子体气动激励等效体积力大小对气膜冷却效果有较大影响,气膜冷却效率随体积力的增大先升高后降低,存在一个最佳等效体积力值。  相似文献   

11.
利用等离子体气动激励提高气膜冷却效果的数值研究   总被引:1,自引:1,他引:0  
代胜吉 《科学技术与工程》2013,13(18):5234-5239
为揭示等离子体气动激励对气膜冷却效果的影响机理,采用数值模拟方法研究了不同吹风比下的冷却气流流场分布、垂直主流截面的局部速度矢量分布和温度分布情况,并与常规气膜冷却结果作对比。结果表明,等离子体气动激励能有效诱导冷却气流偏转,提高气膜贴壁效果,延缓主流和冷却气流的掺混,壁面冷却效果显著增大;在不同吹风比下,沿流动方向等离子体启动激励气膜冷却效率的变化趋势相同;在激励器表面处壁面温度略有增大,但不影响冷却效率的提高。  相似文献   

12.
等离子体气动激励改善气膜冷却效率的数值研究   总被引:5,自引:0,他引:5       下载免费PDF全文
为了获得等离子体气动激励改善气膜冷却效率的机理及影响规律,采用数值模拟方法研究了等离子体气动激励电极相对位置x/L分别为0.3、0.4和0.5时不同吹风比下的流动过程和冷却效率的分布情况,并通过与常规气膜孔冷却结构形式进行的对比,以揭示等离子体气动激励改善气膜冷却效率的作用机理。研究表明:等离子体气动激励产生的等离子体流能诱导冷却气流偏转,使冷却气流更好地贴覆壁面,改善了气膜冷却效率;等离子体气动激励电极位置离气膜孔出口距离越近,等离子体流诱导改善气膜冷却效率的作用越好,并且随着吹风比的减小,其作用效果越明显。  相似文献   

13.
采用压敏漆(PSP)实验技术测量某F级重型燃气轮机第一级透平静叶前缘和压力面的气膜冷却效率及叶片表面压力分布,初步检验静叶前缘和压力面的整体气膜冷却效果,探讨吹风比、密度比和供气方式等参数对前缘及压力面气膜冷却特性的影响。结果表明:前缘气膜孔采用交错布置,气膜冷却效率分布相对均匀,同时部分未被完全掺混的冷气在下游压力面产生气膜覆盖,随着吹风比增大,前缘冷却喷射在压力面的气膜覆盖范围增大且强度增强,由于受到叶栅通道涡的影响,气膜覆盖区域往下游向中间聚拢,形成气膜三角区;压力面逐排供气意在探讨各排孔在不同吹风比和密度比条件下的基本冷却特性,成型孔的布置使得冷却效率由吹风比主导,各排孔的气膜冷却效率随着吹风比增大而增大;相比于逐排供气,多排孔连供更接近于燃气轮机的真实运行环境,表征了各排孔相互干涉条件下的整体气膜冷却效率分布,多排联供使得冷气在下游逐渐形成累积,近尾缘区域之后表现得尤为明显,同时气膜冷却效率的累积特性基本符合"Shettle superposition"规律。  相似文献   

14.
为了研究气膜孔几何位置对旋流冷却特性的影响,建立了带有气膜孔的旋流腔冷却结构,利用流体动力学软件ANSYS CFX对比分析了有无气膜孔情况下旋流冷却性能的差异,并研究了气膜孔轴宽比和周向角度对旋流冷却流动和换热特性的影响。研究结果表明:气膜孔对旋流腔靶面旋流冷气运动产生强烈扰动,使气膜孔上游冷气流速增加,下游冷气流速降低;气膜孔使主流流线向斜下方偏转,增强了整体换热强度且整体压力分布趋于均匀;轴宽比从0.3增加到0.7,气膜孔对整体流动和传热影响不大,轴宽比增加到0.9,主流小旋涡消失且靶面Nu分布更均匀;周向角度小于0°时,随着周向角度的增加,气膜孔上游高速区增大,周向角度超过0°后,高速区随周向角度增长不明显;随着周向角度增加,周向平均压力系数增加,气膜孔附近高Nu区扩大,靶面高Nu区分布更均匀。  相似文献   

15.
为了研究不同孔型对平板气膜冷却的影响,针对圆形,扇形,水滴形,收敛缝形四种气膜出流孔型的流动和传热特性进行了数值模拟。研究结果表明,圆形孔、扇形孔和水滴形孔气膜出口下游出现从中心向上抬升的反向旋转涡对,将主流燃气卷吸进来;收敛缝形孔在侧向的扩张型面使得气膜出流在展向的覆盖更为均匀,这有效地阻止了高温气体的侵入;在相同吹风比下,收敛缝形孔在气膜出口附近区域的平均绝热冷却效率则明显要高于其余三种孔,随着吹风比的增大,这种差距越发明显;孔型对对流换热系数增强比的影响区域仅局限在邻近气膜孔出口大约7倍气膜孔径的范围内。   相似文献   

16.
为了进一步优化现代先进燃机高压涡轮静叶前缘区域的冷却性能,基于NASA C3X叶型建立了上游腔室采用冲击冷却与气膜冷却组合的阵列冲击-气膜复合冷却静叶模型,采用流固共轭传热方法数值研究了涡轮静叶内部冷气的流动和传热特性,针对常用的冷气流量范围分析了引入二次冲击结构对静叶前缘冷却性能的影响。结果表明:二次冲击对靶面对流换热影响较小,但能有效提高冷气在整个流路中的对流换热强度,还能平衡不同区域气膜孔排的冷气流量分配。二次冲击有效降低了气膜孔附近的固体温度,尤其是对于气膜孔较密集的前缘。同时,在固体导热的作用下,气膜孔附近的低温区会影响到无气膜孔区域,降低整个固体域的温度。二次冲击显著改善了叶片上游表面尤其是前缘的复合冷却性能,其中,对上游表面的优化率大体上随冷气流量的增大先升高后降低,在质量流量比M为1.25%时最高,约为4.44%;对前缘的优化率大体上随冷气流量的增大先降低后升高,在M为1.50%时最低,约为9.66%,在M为2.25%时最高,约为11.70%。  相似文献   

17.
为了研究主流湍流度对涡轮导叶压力面扩张型气膜孔冷却特性的影响,在高亚声速风洞中进行了实验,通过热电偶测得了气膜孔排下游的气膜冷却效率和换热系数,叶栅进口雷诺数的范围为3.0×105~9.0×105,出口马赫数为0.8。两排单排扩张型气膜孔分别位于压力面25%和70%的相对弧长处,高低湍流度分别为14.7%和1.3%。实验结果表明:对于孔排1,随着吹风比的增大,气膜冷却效率在低湍流度时呈现先增后减的特征,而在高湍流度时单调提升;在相同吹风比时,主流湍流度升高增强了主流和冷气的掺混,加快了冷气的耗散从而降低了气膜冷却效率。对于孔排2,主流湍流度升高在小吹风比时使气膜冷却效率降低,而在大吹风比时抑制了冷气脱离壁面从而提高了气膜冷却效率。吹风比增大显著增强了孔排1下游的换热,而对孔排2影响较小;主流湍流度升高显著提高了孔排1和孔排2下游的换热系数比。整体来看,主流湍流度升高降低了孔排1和孔排2下游的气膜冷却效果。  相似文献   

18.
为了深入研究压气机抽取的脉动冷气影响燃气涡轮动叶凹槽状叶顶的流动与冷却特性,采用数值求解三维非稳态雷诺时均N-S方程和标准k-ω湍流模型的方法,研究了考虑气膜冷却脉动特性的涡轮动叶凹槽状叶顶的气动和冷却性能。采用正弦函数描述动叶凹槽状叶顶中弧线等间距布置气膜冷却孔的冷气脉动特性,对比研究了3种脉动振幅和5种脉动频率的动叶凹槽状叶顶气膜冷却有效度和总压损失系数。研究结果表明:在一个脉动周期内,不同瞬时冷气的穿透能力和附着能力差异显著。气膜冷却冷气吹风比小幅值脉动时,脉动频率的提高改变了叶顶气膜冷却有效度变化曲线的相位,但对整体的冷却效果基本没有影响;冷气吹风比大幅值脉动时,脉动频率的增大略微提高了叶顶冷却性能,并且当脉动频率增大至最大值2 000 Hz时,受到延迟反馈效应的影响,脉动周期内气膜冷却有效度的最低值相比250 Hz时提高约50%。高温主流在冷气吹风比大幅值脉动时周期性入侵冷气管路,对叶顶中间弦长和尾缘处的气膜孔结构造成破环。气膜冷却冷气吹风比低频脉动时,动叶平均总压损失系数以正弦函数规律变化,不同瞬时的总压损失系数差异随冷气吹风比脉动幅值的增大而扩大,同时当脉动频率增加时,不...  相似文献   

19.
周晨  丁亮  冯晓星 《科学技术与工程》2022,22(16):6734-6743
气膜冷却技术广泛应用于航空发动机火焰筒、涡轮叶片等热端部件的冷却。与常规圆柱形气膜孔相比,扇形气膜孔冷却效率更高。为更全面地掌握在典型大涵道比商用航空发动机燃烧室火焰筒工作环境下扇形气膜孔气膜冷却效率随几何参数和吹风比的变化规律,采用数值模拟方法研究了扇形气膜孔的流动和换热,分析并讨论了气膜孔板厚度、气膜孔出口宽度、气膜孔入口圆柱段长度、气膜孔倾斜角以及吹风比对扇形气膜孔下游流场和热侧面气膜冷却效率分布的影响。结果表明:在小吹风比条件下,几何参数的变化对冷却效率影响很小;而当吹风比较大时,冷却效率随几何参数的变化规律可能受其他几何参数的交叉影响;几何参数的变化将诱发不同的卵形涡结构,从而对气膜孔下游的冷却效率分布造成较大的影响。  相似文献   

20.
针对燃气透平叶片带肋板的尾缘开缝模型,采用延迟分离涡模拟非定常数值求解方法,研究了3种肋板倾角(10°, 12.5°, 15°)、4种肋板形状(直肋板,直-直型扩张肋,直-直型收缩肋,直-拱型收缩肋)条件下尾缘开缝区域的流动性能与冷却效果,分析了肋板几何参数对尾缘开缝区域流场结构和气膜冷却性能的影响。计算结果表明:对于带肋板的尾缘开缝结构,开缝壁面的展向平均冷却效率在肋板末端会因为冷气难以向肋板正后方扩散而出现突降,且突降幅度随着肋板倾角的增大而增大;增大肋板倾角会降低开缝壁面的整体冷却性能,当肋板倾角从10°增大至15°时,开缝壁面展向平均冷却效率的最低值从0.66降至0.6,下降了约9.1%;在4种肋板形状下,直-直型扩张肋在肋板间的开缝壁面上拥有最佳的冷却性能,在肋板下游的开缝壁面上表现最差,直-拱型收缩肋在这两段区域内的表现正好与之相反;直-拱型收缩肋条件下开缝壁面上展向平均冷却效率的最低值为0.675,相比直-直型扩张肋提升了约15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号