首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The failure of lesioned axons to regenerate over long distances in the mammalian central nervous system (CNS) is not due to an inability of central neurons to regenerate, but rather to the non-permissive nature of the CNS tissue environment. Regenerating CNS axons, which grow well within a peripheral nerve, for example, fail to penetrate mature CNS tissue by more than about 1 mm. Recent evidence indicates that this may be due to inhibitory membrane proteins associated with CNS oligodendrocytes and myelin. We report here that human telencephalic neuroblasts implanted into the excitotoxically lesioned striatum of adult rats can escape or neutralize this inhibitory influence of the adult CNS environment and extend axons along major myelinated fibre tracts for distances of up to approximately 20 mm. The axons were seen to elongate along the paths of the striato-nigral and cortico-spinal tracts to reach the substantia nigra, the pontine nuclei and the cervical spinal cord, which are the normal targets for the striatal and cortical projection neurons likely to be present in these implants.  相似文献   

2.
The capacity of the adult brain and spinal cord to repair lesions by axonal regeneration or compensatory fibre growth is extremely limited. A monoclonal antibody (IN-1) raised against NI-220/250, a myelin protein that is a potent inhibitor of neurite growth, promoted axonal regeneration and compensatory plasticity following lesions of the central nervous system (CNS) in adult rats. Here we report the cloning of nogo A, the rat complementary DNA encoding NI-220/250. The nogo gene encodes at least three major protein products (Nogo-A, -B and -C). Recombinant Nogo-A is recognized by monoclonal antibody IN-1, and it inhibits neurite outgrowth from dorsal root ganglia and spreading of 3T3 fibroblasts in an IN-1-sensitive manner. Antibodies against Nogo-A stain CNS myelin and oligodendrocytes and allow dorsal root ganglion neurites to grow on CNS myelin and into optic nerve explants. These data show that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.  相似文献   

3.
Nogo-66 receptor antagonist peptide promotes axonal regeneration   总被引:120,自引:0,他引:120  
GrandPré T  Li S  Strittmatter SM 《Nature》2002,417(6888):547-551
Myelin-derived axon outgrowth inhibitors, such as Nogo, may account for the lack of axonal regeneration in the central nervous system (CNS) after trauma in adult mammals. A 66-residue domain of Nogo (Nogo-66) is expressed on the surface of oligodendrocytes and can inhibit axonal outgrowth through an axonal Nogo-66 receptor (NgR). The IN-1 monoclonal antibody recognizes Nogo-A and promotes corticospinal tract regeneration and locomotor recovery; however, the undefined nature of the IN-1 epitope in Nogo, the limited specificity of IN-1 for Nogo, and nonspecific anti-myelin effects have prevented a firm conclusion about the role of Nogo-66 or NgR. Here, we identify competitive antagonists of NgR derived from amino-terminal peptide fragments of Nogo-66. The Nogo-66(1 40) antagonist peptide (NEP1 40) blocks Nogo-66 or CNS myelin inhibition of axonal outgrowth in vitro, demonstrating that NgR mediates a significant portion of axonal outgrowth inhibition by myelin. Intrathecal administration of NEP1 40 to rats with mid-thoracic spinal cord hemisection results in significant axon growth of the corticospinal tract, and improves functional recovery. Thus, Nogo-66 and NgR have central roles in limiting axonal regeneration after CNS injury, and NEP1-40 provides a potential therapeutic agent.  相似文献   

4.
Wang KC  Koprivica V  Kim JA  Sivasankaran R  Guo Y  Neve RL  He Z 《Nature》2002,417(6892):941-944
The inhibitory activity associated with myelin is a major obstacle for successful axon regeneration in the adult mammalian central nervous system (CNS). In addition to myelin-associated glycoprotein (MAG) and Nogo-A, available evidence suggests the existence of additional inhibitors in CNS myelin. We show here that a glycosylphosphatidylinositol (GPI)-anchored CNS myelin protein, oligodendrocyte-myelin glycoprotein (OMgp), is a potent inhibitor of neurite outgrowth in cultured neurons. Like Nogo-A, OMgp contributes significantly to the inhibitory activity associated with CNS myelin. To further elucidate the mechanisms that mediate this inhibitory activity of OMgp, we screened an expression library and identified the Nogo receptor (NgR) as a high-affinity OMgp-binding protein. Cleavage of NgR and other GPI-linked proteins from the cell surface renders axons of dorsal root ganglia insensitive to OMgp. Introduction of exogenous NgR confers OMgp responsiveness to otherwise insensitive neurons. Thus, OMgp is an important inhibitor of neurite outgrowth that acts through NgR and its associated receptor complex. Interfering with the OMgp/NgR pathway may allow lesioned axons to regenerate after injury in vivo.  相似文献   

5.
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein   总被引:105,自引:0,他引:105  
Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.  相似文献   

6.
Chondroitinase ABC promotes functional recovery after spinal cord injury   总被引:82,自引:0,他引:82  
The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs). CSPGs are inhibitory to axon growth in vitro, and regenerating axons stop at CSPG-rich regions in vivo. Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity. To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.  相似文献   

7.
Nogo是一类中枢髓鞘源性抑制蛋白,主要由少突胶质细胞表达,是抑制中枢神经元轴突再生的抑制因子。这些研究成果为探讨CNS损伤的治疗提供了新思路。论文综述了Nogo的结构及在CNS中对神经元轴突再生的抑制作用。  相似文献   

8.
G E Baker  M P Stryker 《Nature》1990,344(6264):342-345
In earlier studies of central nervous fibre tracts, it was tacitly assumed that individual axons are relatively uniform along their length. In the retinofugal pathway in particular, axon diameter, myelin thickness and correlated conduction properties have been treated as constant throughout the optic nerve, chiasm and tract. We report here that the conduction velocities of fibres contributing to the early components of the compound action potential are significantly greater in the optic tract than in the optic nerve of ferrets, and also that the diameters of the largest retinofugal fibres increase from nerve to tract. This observation raises significant questions about the developmental mechanisms in the central nervous system that relate the axons, their diameters, and the glia with which they are myelinated. In addition, it indicates that studies that have relied on the constancy of conduction velocity along the retinofugal course may require reappraisal.  相似文献   

9.
F H Gage  A Bj?rklund  U Stenevi 《Nature》1983,303(5920):819-821
Functional recovery after denervating lesions in the central nervous system (CNS) is particularly prominent if part of the lesioned projection is spared. Several plasticity mechanisms, such as collateral sprouting, hyperactivity of remaining axons and development of receptor supersensitivity, probably contribute to efficient recovery after subtotal lesions. Although denervation-induced collateral sprouting and presynaptic compensatory hyperactivity in spared axons have been described in various systems, any possible interaction or cooperation between the two mechanisms in restoring synaptic transmission in a partially denervated target has so far not been demonstrated. We have shown previously that partial adrenergic denervation of the hippocampus in adult rats is followed by a slow and protracted reinnervation by collateral sprouting from the spared adrenergic afferents. We now report that the partial adrenergic deafferentation is accompanied by a transient increase in turnover of the transmitter in remaining axons which subsides when the denervated region becomes reinnervated, and that the development of this compensatory hyperactivity is confined to the area of maximal denervation. The topographical specificity of the compensatory noradrenergic hyperactivity response, and the interaction between this hyperactivity and the collateral reinnervation process, strongly suggest that the changes in transmitter turnover in spared afferents after denervating lesions can be regulated by local mechanisms operating within the denervated target area.  相似文献   

10.
Suppression of sprouting at the neuromuscular junction by immune sera   总被引:1,自引:0,他引:1  
M E Gurney 《Nature》1984,307(5951):546-548
Injury of afferent motor axons or pathological loss of motoneurones from the spinal cord causes the remaining axons within a muscle to sprout and to reinnervate the denervated muscle fibres. Sprouting occurs at two sites along intramuscular axons, at nodes of Ranvier (nodal sprouting) and at the neuromuscular junction (terminal sprouting). Terminal sprouting is also produced by treatment with botulinum toxin and by other agents that render muscle inactive. The muscle probably provides a signal for terminal sprouting as restoration of muscle activity by direct electrical stimulation prevents sprouting. Such a signal might be a local change on the muscle fibre surface or a 'soluble' sprouting factor, although the failure to induce terminal sprouting in one muscle by denervating adjacent muscles argues against the latter hypothesis. I now report that rabbit antisera against a 56,000 (56K)-molecular weight protein secreted by denervated rat muscle suppress botulinum toxin-induced terminal sprouting in the mouse gluteus muscle. An immune response against this protein has also been detected in serum of patients with amyotrophic lateral sclerosis (ALS), a disease in which loss of motoneurones from the spinal cord is not accompanied by the degree of sprouting and reinnervation seen in other motoneurone diseases.  相似文献   

11.
用HRP逆行示踪法,对成年大白鼠两侧坐骨神经端端吻合术后,再生轴突可塑性作了研究。术后1—12月不同时间内,在吻合端左侧0.8cm处,再横断坐骨神经,放入HRP,存活2天,取材观察。结果表明:所有动物脊髓腰骶段两侧前角均出现HRP标记细胞。标记细胞数量随吻合术后时间增长而增加。左侧前角较右侧前角标记细胞多。说明受损的坐骨神经轴突能再生,各自进入对侧的坐骨神经,向脊髓方向延伸。但是,仅部分再生轴突能延伸过缝合处的组织痂。本实验提示再生轴突的可塑性,它受环境因素的影响。  相似文献   

12.
C Ffrench-Constant  M C Raff 《Nature》1986,323(6086):335-338
Astrocytes are one of the most numerous cell types in the vertebrate central nervous system (CNS) and yet their functions are largely unknown. In the rat optic nerve there are two distinct types of astrocyte: type-1 astrocytes develop from one type of precursor cell, and type-2 astrocytes develop from bipotential, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, that initially give rise to oligodendrocytes (which make myelin in the CNS), and then to type-2 astrocytes. Type-1 astrocytes form the glial limiting membrane at the periphery of the optic nerve and are probably responsible for glial scar formation following nerve transection. The functions of type-2 astrocytes, which, like oligodendrocytes, are found mainly in tracts of myelinated axons throughout the CNS, are unknown. In this report we provide evidence that processes from type-2 astrocytes contribute to the structure of nodes of Ranvier, suggesting that the O-2A cell lineage is specialized for constructing myelin sheaths and nodes in the mammalian CNS.  相似文献   

13.
Trophic control over the expression and membrane distribution of voltage-dependent ion channels is one of the principal organizing events underlying the maturation of excitable cells. The myelin sheath is a major structural determinant of regional ion channel topography in central axons, but the exact molecular signals that mediate local interactions between the oligodendrocyte and axolemma are not known. We have found that large caliber fibre pathways in the brain of the mutant mouse shiverer (shi, gene on chromosome 18), whose developmental fate of myelination is averted by deletion of five exons in the myelin basic protein gene, have a striking excess of sodium channels. As cytoplasmic membranes of shiverer oligodendroglia still adhere to axons, the evidence indicates that myelin basic protein or a myelin basic protein-dependent glial transmembrane signal associated with compact myelin formation, rather than a simple glial-axon contact inhibition or an intrinsic genetic program of neuronal differentiation, could be critical in downregulating sodium channel density in axons. Here we use the shiverer mutant to show that mature central nervous system projection neurons with large caliber unmyelinated fibres sustain functional excitability by increasing sodium channel density. This axon plasticity, triggered by the absence of a single glial protein, contributes to the unexpectedly mild degree of neurological impairment in the mutant brain without myelin, and may be a potentially inducible mechanism determining the recovery of function from dysmyelinating disease.  相似文献   

14.
Target size regulates calibre and myelination of sympathetic axons   总被引:6,自引:0,他引:6  
J T Voyvodic 《Nature》1989,342(6248):430-433
Axons in vertebrate peripheral nerves are ensheathed by Schwann cells. For some axons, this sheath consists of a single layer of glial cell cytoplasm and plasma membranes; for other axons, Schwann cells form multilayered myelin. Whether or not a Schwann cell makes myelin is determined by a signal from the axon, but the nature of this signal is not known. Here I show that sympathetic postganglionic axons, which are normally not myelinated, become myelinated when their calibre is increased as a result of increasing the size of the peripheral target they innervate. This result implies that axon calibre, which is known to be correlated with myelination, is in fact the crucial determinant of whether an axon becomes myelinated. Furthermore, the finding that increasing or decreasing target size causes corresponding increases or decreases in axon size indicates that axon calibre is itself regulated by retrograde signals from peripheral target tissues.  相似文献   

15.
用透射电镜及电子探针X-射线显微分析法研究了丁丙诺啡(Buprenorphine,BN)引起镇痛期间小鼠中脑导水管周围灰质区钙离子分布的改变.按照改进的Komnick方法,脑组织用含有2%焦锑酸钾的1%锇酸固定.实验结果表明,动物经腹腔注射BN(0.8mg/kg)30分钟后,在髓鞘、轴突、线粒体和细胞核中均可见到电子致密的沉淀颗粒,尤其在髓鞘的环状片层中形成大量的、密集的颗粒状沉淀.电子探针X-射线显微分析证实髓鞘中的沉淀颗粒含有元素钙,提示BN镇痛时髓鞘结合大量的钙离子,并且可能经过髓鞘的转运,钙离子进入轴突,贮存于线粒体中.本文讨论了在中枢神经系统中的钙离子转运的可能途径.  相似文献   

16.
Position-dependent properties of retinal axons and their growth cones   总被引:2,自引:0,他引:2  
F Bonhoeffer  J Huf 《Nature》1985,315(6018):409-410
The formation of the very orderly neuronal projection from the retina to the optic tectum is not yet understood, but several mechanisms are thought to be involved in a coordinated fashion. These mechanisms may include mechanical or chemical guidance in channels, guidance by spatial gradients of positional markers, gradients of temporal (maturation) markers or specific inter-axon interactions (see ref. 1 for review). The last-mentioned mechanism could explain the fibre order found in optic nerve and tract. It requires that some or all growing retinal axons can distinguish between retinal axons of various origins and grow preferentially along retinal axons originating from the same area as themselves. The in vitro experiments described here show that growth cones from the temporal half of the chick retina grow preferentially along temporal axons, whereas growth cones from nasal retina do not distinguish between nasal and temporal axons.  相似文献   

17.
A central role for denervated tissues in causing nerve sprouting   总被引:3,自引:0,他引:3  
M C Brown  R L Holland 《Nature》1979,282(5740):724-726
One of the oldest known forms of neuronal plasticity is the ability of peripheral nerves to grow and form functional connections after damage to neighbouring axons. Yet the source of the signal which elicits this "sprouting" remains unknown. In mammalian muscles, paralysis-which gives rise to many of the changes which occur in denervated muscles-causes motor nerve terminals to sprout. Could the inactive muscle fibres (rather than nerve degeneration products, another likely source) be responsible for some of the sprouting found in partial denervation? We confirm in this paper that direct stimulation of a partially denervated muscle inhibits sprouting and show that stimulation does so by activating the denervated fibres. Consequently after partial denervation the same signal as that which causes terminal sprouting in a paralysed muscle is able to spread from the denervated muscle fibres to the nerves on the innervated fibres and initiate terminal sprouting.  相似文献   

18.
D Sun  H Wekerle 《Nature》1986,320(6057):70-72
T lymphocytes specific for myelin basic protein (MBP) are responsible for the cellular events leading to autoimmune disease within the central (CNS) and peripheral (PNS) nervous systems. Both in actively induced and T-cell transfer versions of experimental autoimmune encephalomyelitis (EAE) and neuritis (EAN), the autoaggressive T cells are activated outside the nervous system and reach their target tissue via the blood circulation. The target specificity of the autoaggressive T cells is impressive; T-cell lines specific for MBP predominantly home to and affect the white matter of the CNS whereas T cells specific for PNS myelin protein P2 exclusively infiltrate peripheral nerves. Having penetrated the tight blood tissue barriers, the lymphocytes seem to interact with local cells expressing the relevant autoantigen in an immunogenic form. Although the exact mechanism of target finding and destruction is unknown, studies from our laboratory have shown that astrocytes, a main component of the normal CNS glia, can actively present antigen to specific T cells. This observation suggests that astrocytes are involved in natural immune reactivity within the CNS, and that they may be involved in pathological aberrations, such as in the development of autoimmune lesions. Having studied astrocyte/T-cell interactions in more detail, we discovered that encephalitogenic T-cell lines recognizing MBP on astrocytes will subsequently proceed to kill the presenting cells. Here we report that astrocyte killing follows the rules governing 'classical' T-cell-mediated cytolysis; it is antigen-specific, restricted by antigens of the major histocompatibility complex (MHC) and apparently contact-dependent. Our data suggest that the nature of the recognized antigenic epitope determines whether or not antigen recognition is followed by killing; moreover, killing of antigen-presenting astrocytes seems to be correlated with the capacity to transfer encephalomyelitis to normal syngeneic rats.  相似文献   

19.
B B Stanfield  D D O'Leary 《Nature》1985,313(5998):135-137
In adult rats, cortical neurones that send axons through the pyramidal tract are confined to layer V, over the rostral two-thirds of the cerebral hemisphere. However, during the first postnatal week, many neurones in layer V in the occipital cortex (including the visual cortex) also extend axon collaterals through the pyramidal tract and into the spinal cord. These occipital corticospinal collaterals are completely eliminated over the subsequent 2 weeks, although their cells of origin do not die. We now report that when portions of the occipital cortex from fetal rats are transplanted to more rostral cortical regions of newborn rats, some of the transplanted neurones not only extend axons through the pyramidal tract, but also maintain these axons beyond the stage at which they are normally eliminated. These results suggest that normally-eliminated cortical axons can be 'rescued' and, in the case of pyramidal tract neurones, the position of the neurones within the tangential plane of the cortex is a critical factor in determining which neurones retain and which lose their pyramidal tract collaterals.  相似文献   

20.
A W Mudge 《Nature》1984,309(5966):367-369
Cell-cell interactions are thought to play a crucial part in determining the developmental fate of vertebrate cells and regulating their subsequent differentiation. In the peripheral nervous system, for example, signals from neuronal axons determine whether or not some Schwann cells wrap their plasma membrane concentricially around the axon to form a myelin sheath. Moreover, there is some evidence that the interactions between Schwann cells and neurones are not all one way: for example, Schwann cells are thought to provide signals for neuronal sprouting and regeneration. However, there are no clear examples in which Schwann cells have been shown to influence the normal development of neurones. Here I have used purified populations of embryonic sensory neurones and Schwann cells to demonstrate that Schwann cells have a dramatic influence on the development of these neurones. In the presence of Schwann cells, but not other cell types, the sensory neurones undergo a morphological transformation from an immature bipolar form to a mature pseudo-unipolar form. This provides a striking example of the importance of glial cells for neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号