首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A more accurate calibration and measurement technique with a single wire velocity measuring instrument is used to study the unsteady velocity between the rotors of a counter-rotating axial fan, and some special concluding remarks of unsteady effects were obtained. The unsteady potential influence of the downstream rotor is a dominant factor; the wake disturbance of the upstream rotor is less important. The radial velocity is mainly affected by the vortex strength of the secondary flow at the upstream blade tip and hub region.These results are important for elucidating the mechanism of unsteady flow in a counter-rotating axial compressing system.  相似文献   

2.
Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burner flash smelting furnace have been investigated by numerical modeling and flow visualization. The modeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approach for the particles. Interaction between the gas phase and particle phase, such as frictional forces, heat and mass transfer, are included by the addition of sources and sinks. The modeling results including the fluid flow field, temperature field, concentration field of gas phase and the trajectories of particles have been obtained. The predicted results are in good agreement with the data obtained from a series of experiments and tests in the Jinlong Copper Smelter and the temperature error is less than 20 K.  相似文献   

3.
Gas flow characteristics in nanopores were investigated experimentally and numerically using molecular dynamics (MD) simulations with an emphasis on the friction factor and gas viscosity. The results show that the viscosity and the friction factor in nanopores are much lower than those in macroscale channels. The actual viscosities obtained from the MD studies showed that the gas viscosity in nanopores is less than the macroscale viscosity because collisions between gas molecules are less frequent in high Knudsen number flows and there are more collisions with the wall. The MD simulations show that the velocity profile is composed of two parts, with a much steeper velocity gradient near the wall.  相似文献   

4.
Cyclone separator is one of the main parts of the circulating fluidized bed (CFB) boiler. The separation efficiency of the cyclone separator is very important to the whole boiler. Electrical capacitance tomography (ECT) is a unique measuring technique with great potential in multiphase flow measurement. Experimental studies are carried out on the measurement of volumetric concentration and angular velocity using ECT. The former is determined through image reconstruction method, and the latter is measured by cross-correlating the capacitance fluctuations caused by the conveyed solids. The distribution of void fraction in radial direction, the fluctuating characteristics, probability density function and the spectrum characteristics are analyzed. The feasibility and reliability of the method are verified by experimental results.  相似文献   

5.
In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.  相似文献   

6.
Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.  相似文献   

7.
A finite reaction rate model is presented as a closure of large eddy simulation (LES) to numerically study an open premixed methane/air swirling flame. The resultant model is firstly validated by comparing with reported data and then employed to investigate the effect of swirling intensity on flow field, flame characteristics and combustion instability of the swirling flame. Three differ- ent swirl numbers are considered. The LES results show that as swirling intensity increases, the vortex entrainment and micro-mixing are enhanced, leading to more lean equivalent ratios at flame front; consequently, higher swirling number causes lower flame temperatures and slower CO oxidization; for all simulated swirl numbers, flame fronts are completely located out of the recirculation zones and anchored at the inner surface of the annular swirling steams; swirl number has a crucial effect on swirling flame extension toward radial and tangential dimensions and then significantly affects streamwise flame length, which is a great influencing factor on combustion instability; vortex-induced disturbance on flame in streamwise plays a critical role in combustion instability.  相似文献   

8.
This paper reports research on the effects of variations in injection velocity and permeability on the heat transfer and flow through a highly porous medium between two horizontal parallel plates situated at constant distance with constant suction by the upper plate.Due to this type of variation in injection velocity and in permeability the flow becomes three dimensional.The governing equstions are solved by adopting complex variable notations to obtain the expressions for the velocity and temperature field.The skin-friction along the main flow direction and rate of heat transfer are discussed with the help of graphs.  相似文献   

9.
Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process   总被引:1,自引:0,他引:1  
The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harphain and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.  相似文献   

10.
Based on the two-phase model (Eulerian-Eulerian model), the three dimensional fluid flow in water and that liquid steel systems stirred by one or two multiple gas jets are simulated. In the Eulerian-Eulerian two-phase model, the gas and the liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase. A new turbulence modification k-ε model is introduced to consider the bubbles movement contribution to k and ε. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass conservation equation. The mathematical simulation agrees well with the experiment results. The study results indicate that the distance of two nozzles has big effect on fluid flow behavior in the vessel. Using two gas injection nozzles at the half radii of one diameter of the bottom generates a much better mixing than with one nozzle under the condition of the same total gas flow rate.  相似文献   

11.
The self-excited flow oscillation due to supercritical heat addition during the condensation process in wet steam turbine is an important issue. With an Eulerian/Eulerian model, the self-excited oscillation of wet steam flow in a supersonic turbine cascade is investigated. A proper inlet supercooling results in the transition from steady flow to self-excited oscillating flow in the cascade of steam turbine. The frequency dependency on the inlet supercooling is not monotonic. The flow oscillation leads to non-synchronous periodical variation of the inlet and outlet mass flow rate. The aerodynamic force on the blade varies periodically due to the self-excited flow oscillation. With the frequency lies between 18.1?80.64 Hz, the oscillating flow is apt to act with the periodical variation of the inlet supercooling due to stator rotor interaction in a syntonic pattern, and results in larger aerodynamic force on the blade. The loss in the oscillating flow increases 20.64% compared with that in the steady flow.  相似文献   

12.
In compact spinning with pneumatic groove,the computational fluid dynamic model,computed with parallel technologies Fluent 6.3,is developed to simulate the flow field in condensing zone with 3D computational fluid dynamic (CFD) technology.Flowing state,distribution rules of static pressure,and velocity in condensing zone are characterized and analyzed.The results show that the fiber bundle in compact spinning with pneumatic groove is compacted by airflow and the shape of the pneumatic groove,and the static pressure in condensing zone is negative,as well as the velocity of airflow in condensing zone is not zero.The fluctuation frequencies of the static pressure and velocity near the bottom of the pneumatic groove are relatively higher,and the number of the fluctuation is equal to that of the round holes in condensing zone.  相似文献   

13.
Effects of operating conditions and device' s geometrical sizes on geometrical properties of wall-attaching transonic jet between two parallel plat plates are numerically simulated. Conclusions are as follows : 1 ) Upriver part of the wall-attaching jet's center streamline is in good accordance with parabola; 2) When both gas inlet pressure and outlet pressure as well as their ratio are not too high ( the outlet pressure is less than 10 MPa and the pressure ratio is less than 3 ), the center streamlines of the wall-attaching jet with the same pressure ratio coincide with each other very well, and the deflection degree of the center streamline decreases with rise of the pressure ratio ; 3 ) The deflection degree of the jet' s center streamline decreases with either broadening of nozzle' s throat or rise of wall offset ; 4) With rise of the pressure ratio, attachment distance of the jet increases, but the increase rate descends ; 5 ) The attachment distance ascends with rise of either the nozzle' s throat or the wall offset.  相似文献   

14.
The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.  相似文献   

15.
Numerical simulations of granular flows in rotating drums operated at medium to high rates (Fr=0.1― 0.2) have been carried out by using a Molecular Dynamics (MD) algorithm that incorporates inelastic particle interactions, sliding friction and rolling friction. The results indicate that the behavior of granular flow in rotating drums can be classified into two distinct zones: a shear active layer at the bed surface and a quasi-static plug flow region adjacent to the wall. The residence time of a tracer particle in the active layer is approximately a third or a half of that in the plug flow region. The thickness of the active layer at mid-chord is about 0.57―0.61 times that of the plug flow region. It is found that all cases simulated in this work are in the rolling-cascading intermediate regime instead of the pure rolling re-gime. The simulated tangential velocity at the mid-chord is also compared with experimental results reported in the literature and good agreement has been obtained. Based on the MD simulations and experimental results, a continuum approach has also been developed. It is shown that the behavior of granular solids in the plug flow region experiences plastic deformation along the radial direction from the wall with the velocity profiles well described by an exponential function, whereas the active layer velocity follows a simple expression for the Couette shear flow. Discussion has also been made on the granular temperature and concentration profiles.  相似文献   

16.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

17.
The chemical and isotopic compositions of nine natural gas samples from Xiaoquan, Xinchang and Hexinchang fields in the central part of Western Sichuan Depression were measured. All of the samples consist mainly of CH, and the contents of hydrocarbons are > 99 % in volume with the gas wetness > 0.5 % . The methane 8" C, and ethane S^C; values of these gases are > - 37%c and > - 27%e respectively. The results indicate that hydrocarbons were formed via thermogenesis. The hydrocarbons in Xiaoquan field were generated from source rocks at early mature and mature stages, while the hydrocarbons in Xinchang and Hexinchang fields came from source rocks at mature and late mature stages respectively. In addition, the isotope ratios and the chemical compositions of the gases from Xinchang field varied with depth, indicating that the hydrocarbons were derived from the deeply buried and the mature source rocks of Upper Triassic age and had experienced a long distance migration.  相似文献   

18.
A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.  相似文献   

19.
The inlet temperatures of gas turbines are generally increasing over time,so conventional cooling methods are likely to approach their useful limits.It is therefore essential to investigate novel cooling methods.Based on the theory of heat transfer enhancement,a novel film cooling method for gas turbine blades using a chemical heat sink is proposed.In this method,the endothermic reaction of an NH 3 cooling stream heated by the main gas stream takes place,reducing the convective heat transfer between the mainstream and the blades.Therefore,film cooling effectiveness is improved.To test the feasibility of the proposed method,numerical simulations were conducted,using the classical flat plate with a 30 degree angled cylindrical hole(diameter,D).Film cooling effectiveness at different blowing ratios(M = 0.5,1.0,and 1.5) were computed and compared with the results of conventional cooling methods.The simulation results show that the proposed method can enhance film cooling effectiveness not only in the stream-wise direction,but also in the span-wise direction.The span-averaged film effectiveness is improved in the presence of a chemical heat sink,with the value of X/D(the ratio of downstream distance from the center of the film hole to the diameter of the film hole) increasing downstream of the film hole.The novel film cooling approach showed the best performance at M = 0.5.  相似文献   

20.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min~(-1) and casting speed of 1.7 m·min~(-1). Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号