首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burn injury causes an immunosuppression associated with suppressed adaptive immune function. Dendritic cells (DCs) are APCs for which signaling via their Toll-like receptors (TLRs) induces their maturation and activation, which is essential for the adaptive immune response. In this study, we examined if burn injury alters the TLR activity of splenic DCs. After injury, we noticed that DC functions were impaired, characterized by a suppressed capacity to prime naive T cells when triggering the TLR4 signaling cascade using specific ligands (LPS or rHSP60). The observed perturbations on LPS-primed DCs isolated from burned mice exhibited significantly diminished IL-12p40 production and enhanced IL-10 secretion-associated impairment in mitogen-activated protein kinase activation. Interestingly, we observed a decrease of TLR4/MD-2 expression on the CD8α+ DC subset that persisted following LPS stimulation. The altered TLR4 expression on LPS-stimulated CD8α+ DCs was associated with reduced capacity to produce IL-12 after stimulation. Our results suggested that TLR4 reactivity on DCs, especially CD8α+ DCs, is disturbed after burn injury.  相似文献   

2.
Toll-like receptors (TLRs) are a class of pattern recognition receptors sensing microbial components and triggering an immune response against pathogens. In addition to their role in anti-infection immunity, increasing evidence indicates that engagement of TLRs can promote cancer cell survival and proliferation, induce tumor immune evasion, and enhance tumor metastasis and chemoresistance. Recent studies have demonstrated that endogenous molecules or damage-associated molecular patterns released from damaged/necrotic tissues are capable of activating TLRs and that the endogenous ligands-mediated TLR signaling is implicated in the tumor development and affects the therapeutic efficacy of tumors. Since both exogenous and endogenous TLR ligands can initiate TLR signaling, which is the most valuable player in tumor development becomes an interesting question. Here, we summarize the effect of TLR signaling on the development and progression of tumors, and discuss the role of exogenous and endogenous TLR ligands in the tumorigenesis.  相似文献   

3.
目的 研究酒精性慢性胰腺炎组织中白细胞分化抗原14(CD14)、钟样受体4(TLR4)、肿瘤坏死因子(TNFα)的表达,探讨酒精性慢性胰腺炎的发病机制.方法 24只1月龄雄性SD大鼠随机分为对照组、脂多糖组、酒精组、酒精联合脂多糖组(以下简称联合组)各6只.酒精组和联合组饲以25%酒精,饮酒12用后联合组和脂多糖组,反复腹腔注射脂多糖2 mg/kg·w,共4次.用免疫组化及RT-PCR检测CD14、TLR4、TNF在各组的表达.结果 酒精组CD14、TLR4和TNF表达较对照组和脂多糖组增加(P<0.05),联合组CD14、TLR4和TNF表达较对照组、脂多糖组明显增加(P<0.01),较酒精组增加(P<0.05).结论 酒精性慢性胰腺炎组织中CD14、TLR4和TNF表达增加,脂多糖通路可能参与了慢性胰腺炎发生发展.  相似文献   

4.
5.
Mammalian toll-like receptors: from endogenous ligands to tissue regeneration   总被引:13,自引:0,他引:13  
Following injury a complex but well-orchestrated cellular response stimulating wound healing and tissue regeneration is induced. The balance of different cytokines, growth factors and cells is important in regulating tissue reorganisation. The immune system is critically involved in this process. Toll-like receptors (TLRs) are essential to the innate immune system, recognising microbial pathogens. The recent identification of endogenous ligands of TLRs suggests that they function not only to induce defensive antimicrobial immune responses but also as a sensitive detection system to initiate tissue regeneration after injury. Here we present an overview of TLRs and their endogenous ligands, and also review the roles of TLRs in inducing tissue regeneration after injury and in maintaining homeostasis. The identification of endogenous TLR ligands and their involvement in inducing tissue regeneration will provide new options to improve tissue reorganization after injury. Received 26 April 2006; received after revision 16 June 2006; accepted 24 August 2006  相似文献   

6.
Toll-like receptors (TLRs) act as sensors of microbial components and elicit innate immune responses. All TLR signaling pathways activate the nuclear factor-kappaB (NF-κB), which controls the expression of inflammatory cytokine genes. Transforming growth factor-β-activated kinase 1 (TAK1) is a serine/threonine protein kinase that is critically involved in the activation of NF-κB by tumor necrosis factor (TNFα), interleukin-1β (IL-1β) and TLR ligands. In this study, we identified a novel protein, WD40 domain repeat protein 34 (WDR34) as a TAK1-interacting protein in yeast two-hybrid screens. WDR34 interacted with TAK1, TAK1-binding protein 2 (TAB2), TAK1-binding protein 3 (TAB3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in overexpression and under physiological conditions. Overexpression of WDR34 inhibited IL-1β-, polyI:C- and lipopolysaccharide (LPS)-induced but not TNFα-induced NF-κB activation, whereas knockdown of WDR34 by a RNA-interference construct potentiated NF-κB activation by these ligands. Our findings suggest that WDR34 is a TAK1-associated inhibitor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. D. Gao and R. Wang contributed equally to this work.  相似文献   

7.
Inflammatory reactions to ssRNA viruses are induced by the endosomal Toll-like receptors (TLRs) 7 and 8. TLR7/8-mediated inflammatory reaction results in activation of the Nalp3 inflammasome via an unknown mechanism. Here we report for the first time that TLR7/8 mediate activation of xanthine oxidase (XOD) in an HIF-1α-dependent manner. XOD produces uric acid and reactive oxygen species, which could activate Nalp3 and therefore induce activation of caspase 1, known to convert inactive pro-IL-1β into active IL-1β. Specific inhibition of the XOD activity attenuates TLR7/8-mediated activation of caspase 1 and IL-1β release. These results were obtained using human THP-1 myeloid macrophages. The findings were verified by conducting in vivo experiments on mice.  相似文献   

8.
The transmembrane glycoprotein CD98 is a potential regulator of multiple functions, including integrin signaling and amino acid transport. Abnormal expression or function of CD98 and disruption of the interactions between CD98 and its binding partners result in defects in cell homeostasis and immune responses. Indeed, expression of CD98 has been correlated with diseases such as inflammation and tumor metastasis. Modulation of CD98 expression and/or function therefore represents a promising therapeutic strategy for the treatment and prevention of such pathologies. Herein, we review the role of CD98 with focus on its functional importance in homeostasis and immune responses, which could help to better understand the pathogenesis of CD98-associated diseases.  相似文献   

9.
Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling.  相似文献   

10.
The semaphorin proteins were identified originally as axonal guidance factors functioning during neuronal development. In addition to this function, several semaphorins play diverse roles outside the nervous system. The class 4 semaphorin CD100/Sema4D, which utilizes plexin-B1 and CD72 as receptors, exerts important biological effects on a variety of cells, including the neuronal, epithelial and immune cells. Here, we review recent advances exploring the molecular mechanisms governing the biological functions of CD100/Sema4D.Received 1 July 2003; received after revision 25 July 2003; accepted 29 July 2003  相似文献   

11.
Both innate immunity and mucosal surfaces provide the first line of defence against mucosal infections. Innate immunity is a universal and evolutionarily conserved form of host defence that senses microbial organisms. Recent advances in the field of immunology are due mainly to the discovery of the role of Toll-like receptors (TLRs), which recognize conserved microbial molecules. TLR stimulation induces specific patterns of gene expression that lead to the shaping of innate and adaptive immunity. Since mucosal tissues are colonized by innocuous microflora and challenged by infectious pathogens, activation of TLRs in epithelial and lamina propria cells must be tightly controlled to avoid inappropriate signalling that might lead to mucosal inflammation. This review aims to highlight novel insight on the molecules, pathways and gene expression networks associated with microbial recognition by TLRs and mucosal immunity.  相似文献   

12.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   

13.
Cells can die by distinct mechanisms with particular impacts on the immune response. In addition to apoptosis and necrosis, recent studies lead to characterization of a new pro-inflammatory form of cell death, pyroptosis. TLR and NLR, central innate immune sensors, can control infections by modulating host cell survival. In addition, TLRs can promote the induction of autophagy, thus promoting delivery of infecting pathogens to the lysosomes. On the other hand, activation of some NLR members, especially NLRC4 and NAIP5, leads to the infected cell death by pyroptosis, which is accompanied by secretion of the pro-inflammatory cytokines IL-1β, IL-18, and IL-33. Data presented here illustrate how the compartmentalization of the innate immune sensors can influence the outcome of infections by controlling the fate of host cells.  相似文献   

14.
In contrast to antibodies, which recognize antigens in native form, αβ T cell receptors (TCRs) only recognize antigens as peptide fragments bound to MHC molecules, a feature known as MHC restriction. The mechanism by which MHC restriction is imposed on the TCR repertoire is an unsolved problem that has generated considerable debate. Two principal models have been advanced to explain TCR bias for MHC. According to the germline model, MHC restriction is intrinsic to TCR structure because TCR and MHC molecules have co-evolved to conserve germline-encoded TCR sequences with the ability to bind MHC, while eliminating TCR sequences lacking MHC reactivity. According to the selection model, MHC restriction is not intrinsic to TCR structure, but is imposed by the CD4 and CD8 co-receptors that promote signaling by delivering the Src tyrosine kinase Lck to TCR–MHC complexes through co-receptor binding to MHC during positive selection. Here, we review the evidence for and against each model and conclude that both contribute to determining TCR specificity, although their relative contributions remain to be defined. Thus, TCR bias for MHC reflects not only germline-encoded TCR–MHC interactions but also the requirement to form a ternary complex with the CD4 or CD8 co-receptor that is geometrically competent to deliver a maturation signal to double-positive thymocytes during T cell selection.  相似文献   

15.
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.  相似文献   

16.
Cytochalasin D (CD) has been extensively used for assessing the role of the actin cytoskeleton in different biological processes. However, effects of CD have not always been consistent and CD-treated cells have been found to contain irregular spots of F-actin. By transfecting MCF-7 cells with an actin-enhanced yellow fluorescent protein fusion protein we show that, in vivo, CD induces actin aggregation de novo, while simultaneously depolymerizing preexisting actin cytoskeletal components. We also show that CD-induced actin aggregates bind the F-actin-selective drug phalloidin and associate with proteins involved in cell signaling as well as with receptors and endosomal markers (active MAP kinases, paxillin, erbB2, transferrin, Rab-5), but not with clathrin, protein kinase A, protein tyrosine phosphatase 1B, or tubulin. Thus, CD induces new sites of actin aggregation that selectively associate with several important regulatory proteins. Failure of CD to interupt a biological process may therefore not prove that the process is independent of actin aggregation.  相似文献   

17.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   

18.
19.
MD2, a 160-residue accessory glycoprotein, is responsible for the recognition and binding of Gram-negative bacterial membrane component, lipopolysaccharide (LPS). Internalization of pathogen inside the mononuclear phagocytes has also been attributed to MD2 which leads to the clearance of pathogens from the host. However, not much is known about the segments in MD2 that are responsible for LPS interaction or internalization of pathogen inside the defense cells. A 16-residue stretch (MD54) from MD2 protein has been identified that possesses a short heptad repeat sequence and four cationic residues enabling it to participate in both hydrophobic and electrostatic interactions with LPS. An MD54 analog of the same size was also designed in which a leucine residue at a heptadic position was replaced with an alanine residue. MD54 but not its analog, MMD54 induced aggregation of LPS and aided in its internalization within THP-1 monocytes. Furthermore, MD54 inhibited LPS-induced nuclear translocation of NF-κB in PMA-treated THP-1 and TLR4/MD2/CD14-transfected HEK-293T cells and the production of pro-inflammatory cytokines. In addition, in in vivo experiments, MD54 showed marked protection and survival of mice against LPS-induced inflammation and death. Overall, we have identified a short peptide with heptad repeat sequence from MD2 that can cause aggregation of LPS and abet in its internalization within THP-1 cells, resulting in attenuation of LPS-induced pro-inflammatory responses in vitro and in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号