共查询到20条相似文献,搜索用时 140 毫秒
1.
结构边界条件识别和损伤诊断,对于实验室条件下研究结构的动力特性具有重要的实用价值,本文提出了以子网为基础的分区组合式神经网络模型,并以钢筋混凝土梁在静力作用下的挠度作为特征参数,实现了结构的边界条件识别和损伤诊断。 相似文献
2.
基于神经网络的土木工程结构损伤识别研究 总被引:1,自引:0,他引:1
本文从土木工程结构损伤识别出发,探索神经网络在土木工程结构损伤识别中的运用。论文首先阐述人工神经网络在土木工程结构损伤识别中应用的可行性,然后具体分析了基于人工神经网络技术的结构损伤识别。 相似文献
3.
以光纤光栅为传感元件,四边简支板为研究对象,BP神经网络为信号处理手段,研究了光纤光栅传感器和BP神经网络在结构损伤识别中的应用,实验表明,光纤光栅传感器具有灵敏度高、稳定性好的特点,是结构损伤识别中的一种新的信号采集工具。采用光纤光栅作为传感元件,不仅可使BP神经网络成功地实现对四边简支板的损伤识别。而且提高了结构损伤识别的精度。 相似文献
4.
针对结构损伤识别问题, 提出一种基于多目标优化策略的结构损伤识别智能算法. 该算法利用极端学习机为损伤参数指标与每一阶频率建立非线性函数表达式, 先将结构的每一阶实际测量频率与函数表达式相减, 再把形成的每个表达式作为优化目标, 进而得到结构损伤识别的高维多目标优化模型. 为提高模型的求解精度, 提出了灰色多粒子群协同的多目标优化算法. 实验结果表明, 该方法能较好地处理结构损伤识别问题. 相似文献
5.
应用人工神经网络技术,提取结构的固有频率的变化为特征参数,建立结构损伤识别模型,提出用遗传算法来调整神经网络的权值,并对一个框架模型进行了损伤数值模拟计算,即基于遗传算法一神经网络方法的结构损伤识别的研究。该方法弥补了传统的种经网络BP网络收敛速度慢,易陷入局部极小点等缺陷.结构表明,该方法具有收敛速度快和识别精度高的特点。 相似文献
6.
基于神经网络的建筑结构节点损伤识别方法 总被引:7,自引:2,他引:7
将建筑结构节点损伤识别反问题归结为优化问题,然后用LM人工神经网络来求解.对建筑结构中某些点的垂直位移进行静态测量,用以确定建筑结构中受损伤节点的位置.同经典的优化方法相比,人工神经网络具有全局收敛性.利用神经网络对受损建筑结构节点的位置进行识别是一种可行的方法.数值模拟结果表明,采用Levenberg-Marquardt法训练的神经网络进行结构损伤识别具有较快的收敛速度和较高的识别精度,并且具有良好的鲁棒性。 相似文献
7.
基于遗传算法和BP神经网络的结构损伤识别 总被引:2,自引:1,他引:1
鉴于BP神经网络需要较长的训练时间、易陷入局部极小值、网络权值和阈值难确定等不足。运用遗传算法全局寻优的特点对BP网络的权值和阈值进行优化。同时运用遗传算法进行网络训练,避免网络收敛于局部极小值。通过对一根单梁实验数据的识别,结果表明两者的结合能对结构进行准确的识别。 相似文献
8.
针对传统基于机器学习损伤识别方法手工提取特征适应性差、识别能力弱等问题,提出一种基于卷积神经网络和迁移学习的新颖、快速结构损伤识别方法.首先根据损伤特征向量特点,提出原始信号的分帧处理流程;其次考虑多传感器数据融合要求,建立多通道一维卷积神经网络结构损伤识别模型,给出模型的整体流程和网络参数;然后采集不同通道和不同噪声水平下,模拟不同位置程度损伤的15层框架数值模型加速度数据,进行损伤识别;最后将网络模型进行迁移学习,对7层框架模型试验进行损伤识别,并验证所提方法的可行性、准确性和计算复杂性.结果表明,该方法实现了特征自适应提取、损伤位置和损伤程度的精准识别,具有突出的计算效率. 相似文献
9.
提出了一种基于粒子群优化算法(PSO)的二阶段结构损伤识别方法。该方法利用实际结构测试中较为成熟且结果相对稳定、准确的静力位移及基频的变化为基础,通过损伤信号匹配技术以及PSO分别进行损伤初步定位及损伤最后定量。通过对平面桁架结构的数值模拟结果表明该方法对结构中的受损构件及其损伤程度能够做出正确高效的识别和判断。 相似文献
10.
应用人工神经网络技术,提取结构的固有频率的变化为特征参数,建立结构损伤识别模型,提出用遗传算法来调整神经网络的权值,并对一个框架模型进行了损伤数值模拟计算,即基于遗传算法-神经网络方法的结构损伤识别的研究。该方法弥补了传统的神经网络 BP 网络收敛速度慢,易陷入局部极小点等缺陷. 结构表明,该方法具有收敛速度快和识别精度高的特点。 相似文献
11.
神经网络用于损伤识别遇到的最大问题就是训练样本数量的组合爆炸问题,单纯用神经网络进行损伤诊断有很大困难.提出了一种两步识别法来进行损伤诊断,即先采用结构的曲率模态,定义一个新的损伤指标,判断损伤位置,再利用BP神经网络精确识别损伤程度;运用两步识别法对一座混凝土连续刚构桥进行了损伤位置与损伤程度的识别.识别结果表明,对于2个单元和3个单元损伤的情况,分别只需16个和64个损伤样本就能取得满意的识别结果,大大减少了单纯利用神经网络进行损伤识别所需的损伤样本. 相似文献
12.
针对新奇检测难以同时识别结构损伤时刻和损伤位置的问题,提出在新奇检测中引入卷积神经网络以实现损伤时刻和损伤位置的一次性确定。首先,采用小波包技术处理结构响应得到小波包能量,并将相邻测点对应频带的能量比作为新奇检测模型的特征向量;然后,以结构健康时的特征向量作为训练数据,建立健康模式下的基于卷积神经网络的新奇检测模型;接着,将结构实时输出的特征向量输入到新奇检测模型,所得输出与健康状态的输出进行对比,并将输出和输入的欧氏距离作为新奇指标;最后,根据新奇指标的变化识别结构损伤时刻和损伤位置。数值模拟和实验室试验验证了该方法的有效性。 相似文献
13.
针对曲率模态对振型节点较不敏感且无法定量估计损伤的问题,在广义局部信息熵的基础上引入曲率模态,推导出广义局部曲率模态信息熵的公式,并建立相应的损伤指标.利用有限元软件Midas civil建立一简支梁桥损伤模型,提取并处理该简支梁的动力参数,将一阶曲率模态和广义局部曲率模态信息熵分别作为神经网络的输入参数,对损伤进行识... 相似文献
14.
15.
针对互联网中P2P协议以及加密协议无法使用传统方法进行识别的问题,提出一种新的基于会话流统计特征的网络协议识别算法。采用二进制粒子群算法(BPSO)定量选出最能体现不同协议区别的特征子集;并针对BP(Back Propagation)神经网络结构难以确定、易陷入局部极小值等缺陷进行分析,使用粒子群算法对BP神经网络进行优化以提高识别率。实验结果表明:该方法能够有效地从多种网络特征属性中选出最能体现不同协议区别的特征子集,且对于基于UDP协议的网络应用也有较高识别率,经优化后的BP神经网络具有更高识别率。该算法对常见的P2P协议平均识别率达到96%,且能够实时地对网络协议进行识别。 相似文献
16.
基于改进的BP神经网络的钢桁梁桥损伤识别 总被引:1,自引:0,他引:1
文章对某钢桁梁黄河大桥进行了损伤数值模拟,提取其固有频率作为BP神经网络的输入参数来训练网络,对桥梁整体的损伤进行诊断,并根据实桥损伤诊断的结果提出了一种改进的BP神经网络方法,它能够解决传统BP算法的梯度下降速度,从而提高运算速度,通过自调节保证学习过程中每一时刻具有较大的Sigmoid函数值,避免了局部极小。 相似文献
17.
基于小波变换与神经网络的结构损伤检测 总被引:3,自引:0,他引:3
对BP网络和小波分析理论做了简要的概述,并给出了其应用于结构损伤检测的方法.将固有频率进行归一化处理,作为神经网络的输入参数进行结构损伤位置的检测,然后利用小波包技术对损伤结构的振动信号进行分解,求出各频带内的能量作为网络输入参数,进行损伤程度的评估,悬臂梁损伤诊断与实际损伤情况比较结果表明,该方法合理、有效,可用于实际结构的损伤检测。 相似文献
18.
以含损伤的框架结构为研究对象,对损伤位置和损伤程度进行识别。运用有限元分析原理,采用Lanczos法得到框架结构的转角模态,对其转角模态进行连续小波变换可以得到结构的小波系数,再由小波系数模极大值确定损伤的位置。以损伤后结构的固有频率作为神经网络输入参数构造神经网络,从而实现对框架结构损伤程度的识别。通过对一平面框架结构的损伤识别计算分析,验证了方法的有效性。 相似文献
19.
基于卷积神经网络的网络流量识别技术研究 总被引:2,自引:0,他引:2
近年来,深度包检测技术和基于统计特征的网络流量识别技术迅速发展,但它们分别存在不能识别加密流量和依赖人对特征主观选择的缺陷.文章提出了基于卷积神经网络的流量识别方法,将网络数据按照一定的规则转换为灰度图像进行识别,并根据TCP数据包的有序性和UDP数据包的无序性,对原始的网络数据进行了扩展,以进一步提高识别率.实验数据表明,该方法对应用程序和应用层协议两个层次的网络流量具有较高的检测率. 相似文献
20.
基于能量特征的小波概率神经网络损伤识别方法 总被引:2,自引:0,他引:2
以小波能量特征向量作为概率神经网络(PNN)的输入向量集,提出了小波概率神经网络(WPNN)的损伤识别方法.为了验证该方法的有效性,对钢框架进行了损伤识别研究,并考虑了随机噪声的影响.识别结果表明:WPNN抗噪声能力强,识别精度高,在结构损伤识别与在线检测方面具有潜力。 相似文献