首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
心肌细胞兴奋-收缩耦联过程中钙离子调控的研究进展   总被引:1,自引:0,他引:1  
蔡云  杨长军  毛华  耿越 《科技信息》2009,(31):51-52
Ca^2+作为细胞内重要的信使在心肌细胞兴奋-收缩耦联过程中起到重要作用,我们将钙离子对心肌细胞兴奋-收缩耦联过程的调控分为三个阶段:上游调控(胞浆中Ca^2+升高),中枢调控(Ca^2+与肌钙蛋白C结合),下游调控(粗细肌丝结合,形成横桥循环)。本文将对近几年发现的Ca^2+在兴奋-收缩耦联过程中的调控作用进行介绍。  相似文献   

2.
K G Beam  B A Adams  T Niidome  S Numa  T Tanabe 《Nature》1992,360(6400):169-171
The skeletal muscle dihydropyridine (DHP) receptor serves dual functions, as a voltage sensor for excitation-contraction coupling and as an L-type calcium channel. Biochemical analysis indicates the presence of two forms of the DHP receptor polypeptide in skeletal muscle, a full-length translation product present as a minor species and a much more abundant form that has a truncated carboxy-terminus. On the basis of these and other observations, it has been proposed that, in skeletal muscle, only the full-length DHP receptor can function as a calcium channel and that the truncated form can only function as a voltage sensor for excitation-contraction coupling. To resolve this issue, we have now constructed a complementary DNA (pC6 delta 1) encoding a protein corresponding to the truncated DHP receptor in skeletal muscle. Expression of pC6 delta 1 in dysgenic myotubes fully restores both excitation-contraction coupling and calcium current, consistent with the idea that a single class of DHP receptors performs both functions.  相似文献   

3.
T Tanabe  K G Beam  B A Adams  T Niidome  S Numa 《Nature》1990,346(6284):567-569
It is thought that in skeletal muscle excitation-contraction (EC) coupling, the release of Ca2+ from the sarcoplasmic reticulum is controlled by the dihydropyridine (DHP) receptor in the transverse tubular membrane, where it serves as the voltage sensor. We have shown previously that injection of an expression plasmid carrying the skeletal muscle DHP receptor complementary DNA restores EC coupling and L-type calcium current that are missing in skeletal muscle myotubes from mutant mice with muscular dysgenesis. This restored coupling resembles normal skeletal muscle EC coupling, which does not require entry of extracellular Ca2+. By contrast, injection into dysgenic myotubes of an expression plasmid carrying the cardiac DHP receptor cDNA produces L-type calcium current and cardiac-type EC coupling, which does require entry of extracellular Ca2+. To identify the regions responsible for this important functional difference between the two structurally similar DHP receptors, we have expressed various chimaeric DHP receptor cDNAs in dysgenic myotubes. The results obtained indicate that the putative cytoplasmic region between repeats II and III of the skeletal muscle DHP receptor is an important determinant of skeletal-type EC coupling.  相似文献   

4.
K G Beam  C M Knudson  J A Powell 《Nature》1986,320(6058):168-170
Contraction of a vertebrate skeletal muscle fibre is triggered by electrical depolarization of sarcolemmal infoldings termed transverse-tubules (t-tubules), which in turn causes the release of calcium from an internal store, the sarcoplasmic reticulum (SR). The mechanism that links t-tubular depolarization to SR calcium release remains poorly understood. In principle, this link might be provided by the prominent slow calcium current that has been described in skeletal muscle cells of adult frogs and rats. However, blocking this current does not abolish the depolarization-induced contractile responses of frog muscle, and the function of this slow calcium current is unknown. Here we describe measurements of calcium currents in developing skeletal muscle cells of normal rats and mice, and of mice with muscular dysgenesis, a mutation that causes excitation-contraction (E-C) coupling to fail. We find that a slow calcium current is present in skeletal muscle cells of normal animals but absent from skeletal muscle cells of mutant animals. The effect of the mutation is specific to the slow calcium current of skeletal muscle; a fast calcium current is present in developing skeletal muscle cells of both normal and mutant animals, and slow calcium currents are present in cardiac and sensory neurones of mutant animals. We believe this to be the first report of a mutation affecting calcium currents in a multicellular organism. The effects of the mutation raise important questions about the relationship between the slow calcium current and skeletal muscle E-C coupling.  相似文献   

5.
E Niggli  W J Lederer 《Nature》1991,349(6310):621-624
The sodium-calcium exchanger is critical in the normal functioning of many cells. In heart muscle, it is the principal way by which the cells keep the concentration of intracellular calcium low, pumping out the Ca2+ that enters the cytosol through L-type Ca2+ channels. The exchanger may also contribute to the triggering of Ca2+ release during voltage-activated excitation-contraction coupling in heart. Time resolved examination of the conformational changes of macromolecules in living cells has so far been largely restricted to ion-channel proteins whose gating is voltage-dependent. We have now directly measured electrical currents arising from the molecular rearrangements of the sarcolemmal Na-Ca exchanger. Changes in the conformation of the exchanger protein were activated by a rapid increase in the intracellular calcium concentration produced by flash photolysis of caged calcium in voltage-clamped heart cells. Two components of membrane current were produced, reflecting a calcium-dependent conformational change of the transporter proteins and net transport of ions by the exchanger. The properties of these components provide evidence that the Na-Ca exchanger protein undergoes two consecutive membrane-crossing molecular transitions that each move charge, and that there are at least 250 exchangers per micron 2 turning over up to 2,500 times per second.  相似文献   

6.
T Wagenknecht  R Grassucci  J Frank  A Saito  M Inui  S Fleischer 《Nature》1989,338(6211):167-170
The calcium channel responsible for the release of Ca2+ from the sarcoplasmic reticulum of skeletal muscle during excitation-contraction coupling has recently been identified and purified. The isolated calcium channel has been identified morphologically with the 'foot' structures which are associated with the junctional face membrane of the terminal cisternae of sarcoplasmic reticulum. In situ, the foot structure extends across the gap of the triad junction from the terminal cisternae of the reticulum to the transverse tubule. We describe here the three-dimensional architecture (3.7 nm resolution) of the calcium channel/foot structure from fast-twitch rabbit skeletal muscle, which we determined from electron micrographs of isolated, non-crystalline structures that had been tilted in the electron microscope. The reconstruction reveals two different faces and an internal structure in which stain accumulates at several interconnected locations, which could empty into the junctional gap of the triad junction. The detailed architecture of the channel complex is relevant to understanding both the physical path followed by calcium ions during excitation-contraction coupling and the association of the terminal cisternae and the transverse tubules in the triad junction.  相似文献   

7.
Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy   总被引:1,自引:0,他引:1  
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.  相似文献   

8.
Calcitonin gene-related peptide regulates calcium current in heart muscle   总被引:6,自引:0,他引:6  
K Ono  M Delay  T Nakajima  H Irisawa  W Giles 《Nature》1989,340(6236):721-724
The influx of Ca2+ due to the transmembrane calcium current, ICa, has a fundamental role in cardiac pacemaker activity, in the action potential plateau and in excitation-contraction coupling. Both sympathetic and parasympathetic neurotransmitters can modulate ICa. Recent studies indicate that in both the cardiovascular and the central nervous systems, nerve varicosities exist that contain a novel non-adrenergic, non-cholinergic peptide--calcitonin gene-related peptide (CGRP). Although CGRP is known to exert strong positive inotropic and chronotropic effects, as well as to cause vasodilation, very little is known about the ionic mechanisms of these effects. Here we report that CGRP dramatically increases ICa in single heart cells. Although this CGRP-induced increase in ICa resembles the effect of beta-adrenergic agonists, our results demonstrate some significant differences between the effects of CGRP and these agonists: (1) the increase due to CGRP cannot be blocked by beta-adrenergic antagonists; (2) the CGRP-induced effect is transient; and, (3) CGRP can inhibit isoproterenol-stimulated ICa. Our results provide the first electrophysiological evidence that CGRP can significantly modulate ICa in the heart, and suggest a new additional mechanism for the neurogenic control of cardiac function.  相似文献   

9.
The complete amino-acid sequence of the receptor for dihydropyridine calcium channel blockers from rabbit skeletal muscle is predicted by cloning and sequence analysis of DNA complementary to its messenger RNA. Structural and sequence similarities to the voltage-dependent sodium channel suggest that in the transverse tubule membrane of skeletal muscle the dihydropyridine receptor may act both as voltage sensor in excitation-contraction coupling and as a calcium channel.  相似文献   

10.
T Tanabe  A Mikami  S Numa  K G Beam 《Nature》1990,344(6265):451-453
There are dihydropyridine (DHP)-sensitive calcium currents in both skeletal and cardiac muscle cells, although the properties of these currents are very different in the two cell types (for simplicity, we refer to currents in both tissues as L-type). The mechanisms of depolarization-contraction coupling also differ. As the predominant voltage-dependent calcium current of cardiac cells, the L-type current represents a major pathway for entry of extracellular calcium. This entry triggers the subsequent large release of calcium from the sarcoplasmic reticulum (SR). In contrast, depolarization of skeletal muscle releases calcium from the SR without the requirement for entry of extracellular calcium through L-type calcium channels. To investigate the molecular basis for these differences in calcium currents and in excitation-contraction (E-C) coupling, we expressed complementary DNAs for the DHP receptors from skeletal and cardiac muscle in dysgenic skeletal muscle. We compared the properties of the L-type channels produced and showed that expression of a cardiac calcium channel in skeletal muscle cells results in E-C coupling resembling that of cardiac muscle.  相似文献   

11.
B A Adams  T Tanabe  A Mikami  S Numa  K G Beam 《Nature》1990,346(6284):569-572
The skeletal muscle dihydropyridine (DHP) receptor is essential in excitation-contraction (EC) coupling. The receptor is postulated to be the voltage sensor giving rise to the intramembrane current, termed charge movement. We have now tested this hypothesis using myotubes from mice with the muscular dysgenesis mutation, which alters the skeletal muscle DHP receptor gene and prevents its expression. Our results indicate that charge movement is deficient in dysgenic myotubes but is fully restored following injection of an expression plasmid carrying the rabbit skeletal muscle DHP receptor complementary DNA, strongly supporting the hypothesis that the DHP receptor is the voltage sensor for EC coupling in skeletal muscle. Additionally, our data obtained for normal and chimaeric DHP receptor constructs demonstrate that DHP receptors with widely differing abilities to function as calcium channels and to mediate EC coupling produce very similar charge movements.  相似文献   

12.
M Schramm  G Thomas  R Towart  G Franckowiak 《Nature》1983,303(5917):535-537
Transmembrane influx of extracellular calcium through specific calcium channels is now accepted to have an important role in the excitation-contraction coupling of cardiac and smooth muscle. The importance of such slow calcium channels has been underlined by the development of specific calcium channel blocking agents, the 'calcium antagonists', typified by verapamil, nifedipine and diltiazem. These drugs have been used to investigate the properties of slow calcium channels in a variety of tissues. We have found that small modifications to the nifedipine molecule produce other dihydropyridine derivatives (see Fig. 1) with effects diametrically opposite to those of the calcium antagonists: cardiac contractility is stimulated and smooth muscle is contracted. These effects are competitively antagonized by nifedipine. Apparently, nifedipine and the novel compounds bind to the same specific dihydropyridine binding sites in or near the calcium channel. In contrast to nifedipine, however, the new compounds promote--instead of inhibiting--the influx of Ca2+ ions. We report here the properties of BAY K 8644 (methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)- pyridine-5-carboxylate), one of the most potent of these novel compounds.  相似文献   

13.
G Varadi  P Lory  D Schultz  M Varadi  A Schwartz 《Nature》1991,352(6331):159-162
The L-type voltage-dependent calcium channel is an important link in excitation-contraction coupling of muscle cells (reviewed in refs 2 and 3). The channel has two functional characteristics: calcium permeation and receptor sites for calcium antagonists. In skeletal muscle the channel is a complex of five subunits, alpha 1, alpha 2, beta, gamma and delta. Complementary DNAs to these subunits have been cloned and their amino-acid sequences deduced. The skeletal muscle alpha 1 subunit cDNA expressed in L cells manifests as specific calcium-ion permeation, as well as sensitivity to the three classes of organic calcium-channel blockers. We report here that coexpression of the alpha 1 subunit with other subunits results in significant changes in dihydropyridine binding and gating properties. The available number of drug receptor sites increases 10-fold with an alpha 1 beta combination, whereas the affinity of the dihydropyridine binding site remains unchanged. Also, the presence of the beta subunit accelerates activation and inactivation kinetics of the calcium-channel current.  相似文献   

14.
Role for microsomal Ca storage in mammalian neurones?   总被引:4,自引:0,他引:4  
I R Neering  R N McBurney 《Nature》1984,309(5964):158-160
Alterations in the intracellular concentration of calcium ions [( Ca2+]i) are increasingly being found to be associated with regulatory functions in cells of all kinds. In muscle, an elevation of [Ca2+]i is the final link in excitation-contraction coupling while at nerve endings and in secretory cells, similar rises in [Ca2+]i are thought to mediate exocytosis. The discovery of calcium-activated ion channels indicated a role for intracellular calcium in the regulation of membrane excitability. Calcium transients associated with either intracellular release or the inward movement of Ca2+ across the membrane have been recorded in molluscan neurons and more recently in neurones of bullfrog sympathetic ganglia. Here, we report the first recordings of calcium transients in single mammalian neurones. In these experiments we have found that the methylxanthine, caffeine, causes the release of calcium from a labile intracellular store which can be refilled by Ca2+ entering the cell during action potentials.  相似文献   

15.
It has been proposed that an influx of calcium ions into twitch muscle fibres during an action potential might initiate contraction. However, when external Ca2+ is lowered to 10(-8) M with EGTA, the fibres can produce normal twitches for many minutes. Nevertheless, a clear Ca2+ influx during contraction has been demonstrated, and it has been found that phasic skeletal muscle has an inward calcium current (ICa) which can give rise to calcium spikes. In certain conditions, a reduction in external Ca2+ with 80-90 mM EGTA results in reversible blockade of excitation-contraction (e-c) coupling, leading some authors to suggest that extracellular Ca2+ moved into the myoplasm due to ICa may be involved in the e-c coupling mechanism that triggers contraction. This proposition was further supported by the localization of ICa in the T-system, which circumvented the problem of the delay due to calcium diffusion from the surface membrane. We have now investigated whether ICa has a clear role in initiating or sustaining contractions in twitch muscle fibres. Our approach was to decrease or eliminate ICa with the calcium-blocking agent diltiazem (Herbesser) and to see how the twitch, tetanic and potassium-contracture tensions were affected. We found that ICa could be decreased or cancelled with the calcium-blocking agent, but that the same concentration of the drug potentiated the twitch, tetanus and contractures. We conclude, therefore, that ICa has no role in e-c coupling. A preliminary report of these results has been presented elsewhere.  相似文献   

16.
Calcium transients in aequorin-injected frog cardiac muscle.   总被引:26,自引:0,他引:26  
D G Allen  J R Blinks 《Nature》1978,273(5663):509-513
The Ca2+ -sensitive bioluminescent protein aequorin was microinjected into cells of frog atrial trabeculae to study intracellular calcium transients associated with excitation-contraction coupling. The amplitude of the aequorin signal increased with extracellular Ca2+ concentration and stimulus frequency, but decreased with stretch. Isoprenaline and acetylstrophanthidin both increased the amplitude, but had strikingly different effects on the time course of the signal.  相似文献   

17.
F A Lai  H P Erickson  E Rousseau  Q Y Liu  G Meissner 《Nature》1988,331(6154):315-319
The calcium release channel from rabbit muscle sarcoplasmic reticulum (SR) has been purified and reconstituted as a functional unit in lipid bilayers. Electron microscopy reveals the four-leaf clover structure previously described for the 'feet' that span the transverse tubule (T)-SR junction. Ca2+ release from the SR induced by T-system depolarization during excitation-contraction coupling in muscle may thus be effected through a direct association of the T-system with SR Ca2+-release channels.  相似文献   

18.
 钙离子是细胞中一种很重要的第二信使,通常它以钙离子浓度振荡的方式转导多种生理学信息,影响细胞分化、成熟和凋亡等各种生理过程,最终导致生物效应。通过实验研究了细胞钙浓度的变化对周期信号的响应和建立在多细胞模型的基础上,从肝细胞内钙离子振荡的动力学模型出发,以胞间耦合因子作为影响因子,数值分析单细胞、耦合的多细胞下的胞内钙振荡形式。实验结果表明:细胞钙振荡对不同频率和强度的周期信号的响应是不同的:对有的参数周期信号能产生强烈响应,有的不能。数值分析结果表明:细胞间的差异性导致钙振荡不同,胞间耦合影响多细胞钙振荡的同步性。  相似文献   

19.
Kho C  Lee A  Jeong D  Oh JG  Chaanine AH  Kizana E  Park WJ  Hajjar RJ 《Nature》2011,477(7366):601-605
The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.  相似文献   

20.
J S Smith  R Coronado  G Meissner 《Nature》1985,316(6027):446-449
Rapid calcium efflux from the sarcoplasmic reticulum (SR) is a necessary step in excitation-contraction coupling in skeletal muscle and is thought to be mediated by a calcium channel. Calcium efflux has been studied in fragmented SR vesicles by radioisotope efflux and fluorescence measurements. Several laboratories have reported that adenine nucleotides can stimulate calcium efflux from SR. In recent reports, Ca2+ release with a first-order rate constant as high as 100 s-1 has been observed for nucleotide-stimulated Ca2+ release from SR vesicles. Also, radioisotope efflux was blocked by Mg2+ and micromolar concentrations of the polycationic dye, ruthenium red. These high rates of transport are difficult to reconcile with a mechanism other than passive diffusion through a nucleotide-activated 'calcium release channel'. Using the fusion technique for inserting SR proteins into planar lipid bilayers, we report here single-channel recordings of calcium release channels from purified 'heavy' SR membranes. Channels have been identified on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and selectivity for divalent cations. Surprisingly, the channel studied here exhibits an unusually large conductance of 170 pS in 50 mM Ba2+ while still being capable of discriminating against monovalent cations by a permeability ratio, P(Ba)/P(Cs) = 11.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号