首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
高速列车受电弓气动噪声特性分析   总被引:1,自引:0,他引:1  
以某高速列车受电弓为研究对象,探讨其在350km/h速度下的气动噪声特性。采用延迟脱体涡模拟(DDES)和声学有限元(FEM)相结合的方法,分析带导流罩受电弓在升起和下降状态下,近场和远场气动噪声空间分布规律和频谱特性,研究流场计算时不同建模方式对诱发噪声幅值和指向性的影响以及壁板的反射和散射作用对噪声频谱特性的影响。结果表明:1)在本文选取的受电弓外形和开口方向下,降弓和导流罩诱发噪声略大于升弓和导流罩诱发噪声;2)导流罩在低于300Hz的低频区诱发噪声比例较大,而受电弓在300Hz后诱发噪声影响较大;导流罩诱发噪声在升弓情形时所占比例相对较大;3)在指向性上,导流罩诱发噪声在受电弓前部贡献较大,受电弓诱发噪声在后部区域贡献较大;在列车正上方区域,弓体诱发噪声大于导流罩诱发噪声,是主要的气动噪声源。  相似文献   

2.
随着我国高速动车组运行速度的不断提升,其产生的噪声对乘客舒适度及周边环境的影响也日愈严重。列车运行时,其噪声源主要包括振动噪声、气动噪声和牵引电机等设备产生的噪声。利用ANSYS的FLUENT流体力学分析模块,建立了350 km/h下受电弓三维有限元仿真分析模型,求解了列车不同运行速度下受电弓表面脉动压力及环境中的噪音强度。研究成果为抑制列车高速运行时受电弓的产生的噪音污染提供了一定的理论基础。  相似文献   

3.
针对高速列车外流场气动噪声完成了在线实验测试研究,对列车模型进行了简化并确定了合理性;进行了列车模型湍流流场模拟,完成了列车远场气动噪声的预测研究.研究表明,合理缩短列车不会改变车身表面声功率分布规律;高速列车气动噪声属于宽频带噪声;在频率范围(0~ 5000Hz)内气动噪声仿真与实验结果吻合较好,说明仿真方法准确度高;列车转向架处湍流最为剧烈,其次为车头鼻锥处;车身表面的气流最为平缓,进一步说明缩短列车模型的合理性.所提出的仿真方法能够为高速列车的结构优化设计提供依据,并能验证高速列车气动噪声控制方法的有效性.  相似文献   

4.
高速列车头型近场与远场噪声预测   总被引:4,自引:0,他引:4  
建立了某头型的1∶8缩比三车编组气动噪声仿真模型,采用大涡模拟获得车身湍流脉动压力,基于FW-H方程和声扰动方程分别获得远场噪声和近场噪声,从而建立一整套头型气动噪声预测方法.远场测点总声压级的仿真结果与风洞试验结果相差小于2.0dB(A),频谱变化趋势相同,量级相差较小,表明基于FW-H方程得到远场噪声的可行性.基于声扰动方程能够获得头型关键部位的总声压级,通过对比量级发现,转向架部位总声压级量级远大于其他部位,这与传声器阵列识别结果相吻合,从而验证了声扰动方程获得近场噪声结果.对比头型各部位湍流脉动总压力级和总声压级发现,转向架和排障器量级大于车窗、鼻锥和车体;与湍流脉动总压力级相比,总声压级分布更为均匀,量级更小.  相似文献   

5.
针对国内高速列车的简化结构模型,采用Virtual Lab Acoustics专业声学求解器,建立了车厢结构声场耦合分析模型,对车厢结构模态、室内空腔模态及室内声振耦合系统进行了模型化分析.理论分析结果表明:在21.24 Hz和35.53 Hz处,车身结构模态的振动频率和空腔模态的振动频率接近,产生共振;在同一水平面上场点声压呈现强弱交替分布,随着频率的增加,车厢内部同一平面上沿横向和纵向的干涉条纹增加;不同测点声压级差异明显,噪声空间分布不均;在20~38Hz频段,声压级处于80 dB以上.  相似文献   

6.
研究以基本气动噪声源(单极子声源、偶极子声源和四极子声源)向远场辐射声功率和物体运动过程中产生的气动噪声与运动速度、物体特征尺寸、距观测点距离和介质特性等的关系,推出了相似运动物体向远场辐射气动声的相互转换关系式,并利用气动声学风洞对高速列车模型产生的远场气动噪声进行测量,据此关系式从低风速测量结果推出了高风速结果,用试验数据进行验证.研究表明,此关系式反映了原型和模型之间在远场辐射气动噪声的相互关系,对模型试验结果分析和向原型的转换具有一定的借鉴作用.  相似文献   

7.
针对高速列车的头车进行全尺寸三维模型和流场流域的创建,并通过k-ε湍流模型计算稳态流场;在稳态流场的基础上,采用宽频带噪声模型计算头车表面的气动噪声源;利用大涡模拟(LES)方法计算瞬态流场,进而获取车身外表面的脉动压力;再基于瞬态流场,采用Lighthill声类比理论研究头车远场气动噪声的计算.最后,比较气动噪声的仿真分析结果与实地试验结果,验证了仿真结果的正确性.  相似文献   

8.
高速列车转向架区域裙板对流场与气动噪声的影响   总被引:2,自引:0,他引:2  
运用声学比拟理论,采用1∶10简化模型对高速列车转向架部位气动噪声进行数值计算,并分析裙板对转向架部位流动与气动噪声性能的影响.基于延迟分离涡模型数值求解Navier-Stokes方程获得近场流场,运用考虑对流效应的Ffowcs Williams-Hawkings方程的声预测程序进行远场声辐射计算.结果表明,由于转向架舱在车体侧墙与底部形成表面不连续结构,流体通过转向架部位时产生了不同尺度和方向的复杂涡结构,上游几何体周围产生的涡向下游传播并与下游几何体相互作用,从而在转向架后端形成高湍流度尾流区.转向架区域外侧安装裙板后,流体与转向架舱的相互作用被削弱.靠近转向架并与车体侧墙平行的可穿透积分面的噪声预测结果显示,裙板可以在较宽频段内有效降低转向架部位的气动噪声.  相似文献   

9.
壁面气动压力长期循环作用是高速铁路隧道衬砌掉块的重要诱因,为研究高速列车行驶速度对壁面气动压力基本特征的影响规律,采用三维数值仿真模拟对隧道典型位置(入口段、洞身段以及出口段)壁面气动压力进行研究。结果表明:列车车头经过使得监测横断面气动压力差异性增强,表现出显著的三维特征。隧道入口段气动压力三维特征主要受压缩空气所占体积大小以及与隧道入口之间距离的影响,气动压力三维特征随着进入隧道入口距离的增加而减弱,并逐渐向一维特征转变。列车车头驶入隧道入口后,车尾驶出隧道出口前,洞身段不同测点位置的气动压力正峰值主要受车头进入隧道入口诱发压缩波的影响,纵轴中断面测点气动压力负峰值与峰峰值大于洞口段。车尾驶出隧道出口后,出口段测点气动压力负峰值大于入口段,正峰值小于入口段。隧道出口段气动压力三维特征与入口段相似,但列车行驶速度以及测点与隧道出口之间距离对气动压力三维特征的影响机制更为复杂。  相似文献   

10.
韩斐  周毅 《科学技术与工程》2022,22(34):15103-15114
受电弓作为高速列车主要噪声源之一,是一个包含许多部件的复杂结构。为研究受电弓气动噪声的主要噪声源以及远场气动噪声特性,基于计算流体力学开源软件OpenFOAM,采用大涡模拟结合K-FWH方程的联合方法,探究受电弓在250 km/h、300 km/h和350 km/h等不同速度下运行时的流场及气动噪声特性。通过模拟受电弓在不同速度以及不同开口状态下的运动,得到受电弓的频谱特性以及噪声源分布规律。结果表明,高速列车受电弓引发的远场气动噪声主要是低频和中频噪声,并且噪声频谱具有明显的主频。而远场噪声指向性方面,受电弓产生气动噪声具有偶极子特性,噪声主要向尾流斜上方传播。受电弓不同开口方向,所诱发的噪声声压级并不相同,闭口状态诱发的声压级更大。研究结果能为日后降低高速列车受电弓气动噪声的研究以及工程降噪问题提供理论参考。  相似文献   

11.
通过对包括CRH2在内的4种不同纵向长细比比例尺为1∶8的高速列车模型进行风洞试验,分析雷诺数对车辆气动力系数的影响;比较4种高速列车模型的气动力特性;对不同流线型外形列车进行大侧偏角试验,研究高速列车在侧风作用下的安全性.研究结果表明:列车流线型头部越长,鼻形更加突出尖锐,头部流线型更加光滑,更有利于降低空气阻力;当模型列车流线型长度相差不大时,纵向长细比系数越大即车头外形越细长,对减阻越有利;4种动车组头车、中车和尾车的侧向力及升力系数均随侧滑角的增大而迅速增大;当侧滑角大于10°时,头部最大纵剖面轮廓线曲率较大的模型,横风作用下的侧向力系数比其他3种模型车的侧向力系数显著增大,升力系数较小.  相似文献   

12.
高速列车噪声是影响车内旅客舒适度和铁路沿线居民生活质量的重要因素,如何有效的降低噪声是高速列车设计者们所关心的问题之一.研究表明,高速列车的车内噪声由透射噪声与结构噪声组成,如何有效的从车内噪声中分离出这两种噪声成分将为列车的减振降噪设计提供一定的指导作用.本文以高速列车实车噪声数据为研究对象,首先运用多种数字信号处理的方法对高速列车噪声数据进行了分析,总结了高速列车噪声的主要特点;然后通过对列车静止时和运行时的噪声透射情形分别进行建模和分析,指出可以利用车体的频响特性作为反映车体隔声性能的声学参数,并提出了一种计算频响特性的简便算法;最后,利用该算法从实车噪声数据中计算出了车体的频响特性,并在此基础上实现了透射噪声与结构噪声的分离.  相似文献   

13.
建立了某高速列车头车-轨道的耦合动力学仿真模型、车身的有限元模型、乘客室的声学边界元模型,计算出了由轨道不平顺引起的乘客室内的噪声分布状况,得出了如下结论:当列车运行速度为200km/h时,乘客室内的A声级在61.9~69.6dBA之间变化;乘客室内A声级较大的场点在40Hz、200Hz频率处的声压级较大;要降低乘客室内的噪声,必须对总声级起决定作用的频率段(40Hz、200Hz)采取措施。针对40Hz的低频噪声,最好在声学贡献最大的面板上采取阻尼降噪措施;针对200Hz的中频噪声,则宜在声学贡献最大的面板上敷设一层在该频率上吸声性能好的吸声材料。  相似文献   

14.
高速列车转向架部位气动噪声数值模拟及降噪研究   总被引:1,自引:0,他引:1  
基于Lighthill声学理论,采用三维、LES大涡模拟和FW-H声学模型对高速列车转向架部位气动噪声进行数值模拟,并提出降噪改进意见.研究结果表明:转向架部位气动噪声在很宽的频带内存在,无明显的主频率,是一种宽频噪声;各监测点气动噪声频谱在低频时幅值较大,随着频率的升高,幅值下降,1/3倍频程A声压级主要集中在315~1 250 Hz频率范围内;当来流速度一定时,距离气动噪声源越远,声压级幅值和总声压级越小;在列车转向架部位设置裙板后,运行速度为300 km/h时,车外声压级幅值较无裙板时有所减小,平均降幅约为8%,总声压级平均降幅1.3 dBA;适当增加裙板面积后,声压级幅值平均降幅达到12%,总声压级平均降幅2.08dBA,降噪效果较明显.  相似文献   

15.
随着我国高速铁路的发展,高速动车组列车牵引仿真计算具有重要意义。对高速动车组的牵引仿真计算的方法进行了研究,分析了与普通列车牵引计算的区别及相关的关键理论。介绍了自主研发的牵引仿真系统的构成和功能。以京沪高速铁路为计算实例,对4种不同的运行方案进行了仿真计算,对线路中的电分相的设置和影响进行了计算分析,并以京沪高速铁路先导试验段的冲高速试验为对象进行了模拟仿真。多次实际应用表明提出的高速动车组牵引仿真计算的方法具有良好的仿真精度和实用意义, 可以为我国高速铁路工程建设提供有效的手段,并据此提出了今后的发展  相似文献   

16.
为了研究风沙环境下高速列车的冲蚀效应,基于空气动力学理论,使用Navier-Stokes方程、标准κ-ε湍流模型对气流进行连续化假设,应用DPM模型对沙粒粒子进行离散化处理。数值模拟了不同风速、不同沙粒粒子直径、不同浓度下的高速列车冲蚀效应,采用欧拉-拉格朗日方法进行求解计算。研究结果表明:速度越大,反射后的粒子距离列车表面越远,偏航角越大,列车附近的粒子运动越无规则;当速度不变时,列车车头处的冲蚀率随着粒子直径的增大而增大;当粒子直径不变时,冲蚀率随着粒子浓度的增大而增大,随着速度的增大呈现先减小后增大的趋势,且最大冲蚀率是最小冲蚀率的2.8倍。  相似文献   

17.
贯流风机气动噪声数值预估   总被引:2,自引:0,他引:2  
通过精细求解二维非定常Reynolds平均的Navier-Stokes方程,数值模拟了贯流风机内部的复杂流场。随后从流场的数值结果中提取出叶片、涡墙和后墙的脉动压力作为声源,进行声场计算。以声学中的Ffowcs Williams-Hawk-ings(FW-H)方程作为出发方程,数值求解贯流风机的噪声场。计算结果表明在贯流风机中,后墙的压力脉动与涡墙的压力脉动是主要的噪声源。该文的数值预估不仅在贯流风机的总体气动性能上与实验测试结果吻合,同时气动噪声场的预估结果也与实验测试结果吻合良好。  相似文献   

18.
采用三维、可压、非定常N-S方程,用动网格技术实现列车与地面、环境风与列车之间的相对运动,对不同风速、风向环境风作用下,磁浮列车以430 km/h速度等速交会时列车横向气动性能进行数值分析。研究结果表明:当风向角为135°时,磁浮列车受到的交会压力波幅值最大;头车和尾车横向力在风向角分别为270°和225°时最大,分别为-172.5 kN和77.4 kN;头、尾车侧滚力矩均在风向角为90°时最大,分别为-226.7 kN·m和-203.7 kN·m;在90°风向角下,风速增大,列车受到的横向力和侧滚力矩增大,横向力近似与风速的0.8次方成正比,而侧滚力矩约与风速的1.3-1.5次方成正比。  相似文献   

19.
发动机壳体辐射噪声预测   总被引:3,自引:0,他引:3  
采用虚拟预测方法研究某发动机壳体的振动特性及噪声辐射特性.采用有限元法分析发动机壳体在振动加速度激励下的动态响应,得到壳体表面的振动速度频谱图,并与试验所得壳体上典型点的振动速度频谱图进行对比,仿真结果与试验结果吻合较好.将计算得到的壳体所有外表面节点的振动速度作为边界元模型的输入载荷,导入到声学仿真分析软件中,计算由壳体表面振动而辐射出的噪声,并用声强试验进行验证,对比了理论计算数据与试验数据,两者的噪声分布云图及噪声源中心点处的声强频谱图,并分析了误差产生的原因,结果表明,采用有限元法与边界元法联合求解的方法能够有效地预测出壳体辐射噪声.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号