共查询到17条相似文献,搜索用时 46 毫秒
1.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)+Ak-1f(k-1)+…+A1f’+A0f=0(k≥2)解的增长性,其中Aj(j=0,1,…,k-1)是亚纯函数,通过给定Aj的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级. 相似文献
2.
设A1(z)是方程f″+P(z)f=0的非零解,其中P(z)是n次多项式,Aj(z)≠0(j=2,3…,k-1)是整函数,A0(z)是一个超越整函数且满足ρ(Aj)<ρ(A0)≤12,j=2,3…,k-1,那么方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=0的每一个非零解都是无穷级。 相似文献
3.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)1Ak-1f(k-1)+…+A1f'+Af=0(k≥2)解的增长性,其中Aj(1≤j≤K-1),A为亚纯函数,假设A是以∞为亏值的超越亚纯函数,通过给定Aj(1≤j≤k-1)的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级. 相似文献
4.
5.
考虑二阶复线性微分方程f″+Af'+Bf=0解的增长性,其中A(z)是满足杨张极值p=q2的有穷级整函数,赋予系数B(z)适当条件,保证方程的每一个非零解是无穷级的。 相似文献
6.
金瑾 《中山大学学报(自然科学版)》2013,52(1):51-54
研究了高阶线性齐次微分方程f (k)+Ak-1(z)Pk-1(e z)f ′ +…+A1(z)P1(ez)f ′ +A0(z)P0(ez)f=0解的增长性,其中Aj(z)≠0(j=0,1,…,k-1)是整函数,Pj(ez)(j=0,1,…,k-1)是ez的非常数多项式,它们的常数项都为零,且次数不相等。证明了该微分方程的每一个非零解有无穷级。 相似文献
7.
利用亚纯函数的Nevanlinna理论研究了高阶复线性微分方程解的增长性,得到了方程的任意非平凡解具有快速增长性的一些系数条件. 相似文献
8.
利用亚纯函数值分布理论,研究了亚纯系数高阶线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=0解的增长性,证明了如果A0(z)以∞为亏值,Aj(z)(1≤j≤k-1)满足某些条件,则上述方程的每个非零亚纯解都为无穷级,得到解的超级的下界估计. 相似文献
9.
研究二阶微分方程f〃+e-znf'+(A1ep(z)+A2eQ(z))f=0解的增长性,运用值分布和复域微分方程理论,得到上述方程的解的增长性的精确估计,推广并完善了文献[10]的结果. 相似文献
10.
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。 相似文献
11.
运用 Nevanlinna 值分布的基本理论和整函数的相关性质,研究了一类高阶齐次线性微分方程解的增长性,在假设其系数均为整函数,且有1个满足杨-张不等式的极端情况的条件下,证明了方程的每1个非零解均具有无穷级。 相似文献
12.
通过利用Nevanlinna值分布理论,考虑了当A(z)、B(z)是有穷级整函数的情况下,线性微分方程f″+A(z)f′+B(z)f=0无穷级解的角域测度。首先得到了一个一般性结果,接下来又结合了整函数的亏值和Borel方向进行讨论,使所得结果得到进一步完善。 相似文献
13.
潘飚 《福建师范大学学报(自然科学版)》2009,25(2)
研究Taylor展式有缺项的整函数的有穷亏值的存在性问题,证明了:设f(z)是一个下级有穷整函数,若f(z)=∑∞n=0cnzλn的残存指数序列λn(n=1,2,…)满足λn≥n (log2n)1+η,η>0,则f(z)不存在有穷亏值. 相似文献
14.
运用Nevunlinna值分布理论和整函数的相关理论,研究了2类不同系数的2阶线性微分方程解的增长性.假设A(z)=h(z)eP1(z),其中P1(z)是m次多项式,h(z)是ρ(h)m的整函数,B(z)是1个级为ρ(B)≠m的超越整函数,证明了方程f″+Af'+Bf=0的每1个非零解都是无穷级;又假设A(z)是方程f″+P2(z)f=0的非零解,其中P2(z)是n次多项式,B(z)是Fabry缺项级数且2ρ(B)≠n+2,也证明了方程f″+Af'+Bf=0的每1个非零解都具有无穷级. 相似文献
15.
伍鹏程 《贵州大学学报(自然科学版)》1989,6(2):78-88
设 f(z)是一个下级为μ的整函数,记 f(z)的有穷亏值数目为 p,判别有穷渐近值数目为 l.本文证明了如下结果:假设 f(z)的亏量总和Δ(f)(?)=(a,f)=2,δ(a,f)>0,则有 p+l≤2μ. 相似文献
16.
本文考虑形如f″+A1(z)f'+A0(z)f=0的复线性微分方程解的性质,其中方程的系数均为整函数.我们将证明如果其中一个系数在一个角域里以指数函数为主,且方程的解f为有穷级,则f(z)在角域内趋于一个常数。 相似文献
17.
考虑形如f″+A1(z)f'+A0(z)f=0的整函数系数的复线性微分方程解的性质。我们将证明如果其中一个系数在一个角域里以指数函数为主,且方程的解f为有穷级,则对于每一个大于1的整数m,f(m)(z)的模都被一指数函数所控制。 相似文献