首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 72 毫秒
1.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)+Ak-1f(k-1)+…+A1f’+A0f=0(k≥2)解的增长性,其中Aj(j=0,1,…,k-1)是亚纯函数,通过给定Aj的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级.  相似文献   

2.
设A1(z)是方程f″+P(z)f=0的非零解,其中P(z)是n次多项式,Aj(z)≠0(j=2,3…,k-1)是整函数,A0(z)是一个超越整函数且满足ρ(Aj)<ρ(A0)≤12,j=2,3…,k-1,那么方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=0的每一个非零解都是无穷级。  相似文献   

3.
研究高阶微分方程f^(k) (A1e^az D1)f’ (A0e^bz D0)f=0的解的增长性,其中Ai,Di(j=0,1)或为整函数,或为亚纯函数,且其级都小于1,推广了已有的结果。  相似文献   

4.
运用Nevanlinna值分布的理论和方法,研究了微分方程f(k)1Ak-1f(k-1)+…+A1f'+Af=0(k≥2)解的增长性,其中Aj(1≤j≤K-1),A为亚纯函数,假设A是以∞为亏值的超越亚纯函数,通过给定Aj(1≤j≤k-1)的不同条件,证明了齐次线性微分方程的任一非零解均为无穷级.  相似文献   

5.
研究了一类高阶线性微分方程解的增长性,推广并完善了文献[3]和[4]的结果.  相似文献   

6.
考虑二阶复线性微分方程f″+Af'+Bf=0解的增长性,其中A(z)是满足杨张极值p=q2的有穷级整函数,赋予系数B(z)适当条件,保证方程的每一个非零解是无穷级的。  相似文献   

7.
 研究了高阶线性齐次微分方程
f (k)+Ak-1(z)Pk-1(e z)f +…+A1(z)P1(ez)f +A0(z)P0(ez)f=0
解的增长性,其中Aj(z)≠0(j=0,1,…,k-1)是整函数,Pj(ez)(j=0,1,…,k-1)是ez的非常数多项式,它们的常数项都为零,且次数不相等。证明了该微分方程的每一个非零解有无穷级。  相似文献   

8.
利用亚纯函数的Nevanlinna理论研究了高阶复线性微分方程解的增长性,得到了方程的任意非平凡解具有快速增长性的一些系数条件.  相似文献   

9.
利用亚纯函数值分布理论,研究了亚纯系数高阶线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=0解的增长性,证明了如果A0(z)以∞为亏值,Aj(z)(1≤j≤k-1)满足某些条件,则上述方程的每个非零亚纯解都为无穷级,得到解的超级的下界估计.  相似文献   

10.
研究二阶微分方程f〃+e-znf'+(A1ep(z)+A2eQ(z))f=0解的增长性,运用值分布和复域微分方程理论,得到上述方程的解的增长性的精确估计,推广并完善了文献[10]的结果.  相似文献   

11.
运用 Nevanlinna 值分布的基本理论和整函数的相关性质,研究了一类高阶齐次线性微分方程解的增长性,在假设其系数均为整函数,且有1个满足杨-张不等式的极端情况的条件下,证明了方程的每1个非零解均具有无穷级。  相似文献   

12.
主要研究了高阶微分方程 f(k)+ Ak -1 f(k -1)+…+ A1 f '+ A0 f =0的解在角域上的增长性,其中 A0,Aj (1≤j≤k -1)为亚纯函数,且假设 A0以有限复数 a 为亏值,ρ(Aj )=0(1≤j≤k -1),通过给定适当的条件,证明了齐次线性微分方程的任一非零解在某些角域上的增长级为无穷。  相似文献   

13.
一类高阶线性微分方程解的增长率   总被引:1,自引:0,他引:1  
研究了一类高阶整函数系统线性微分方程解的增长率,将Ki-Ho Kwon关于二阶线性方程解的超级问题推广到了高阶线性微分方程,而且条件比Ki-Ho Kwon文的条件更松,结论比Ki-Ho Kwon文的结果更为精确。  相似文献   

14.
研究了线性微分方程f^(k) Ak-1(z)e^ak-1^zf^(k-1) … A0(z)e^ao^zf=0的解的增长性,其中Aj(z)是级小于1的整函数,aj是非零复常数(j=0,1,…,k-1),得到了超级的精确估计.  相似文献   

15.
该文研究了一类高阶线性微分方程f (k)+Ak-1 f (k-1)+…+A1 f '+A0 f=F(z)解的增长性,其中A0,A1,…,Ak-1,F(z)是整函数,并且A0、A1是另一个2阶线性方程的非平凡解. 推广了龙见仁等得到的结果.  相似文献   

16.
利用整函数的Nevanlinna值分布理论和复微分方程的研究技巧,研究了高阶齐次线性微分方程解的增长性,探讨了高阶齐次线性微分方程解以及它们的一阶、二阶导数与小函数之间关系,得到了微分方程解以及它们的一阶、二阶导数与小函数零点的精确估计,推广和改进了一些文献中的结论.
  相似文献   

17.
研究了高阶线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z).ep0(z)f=0和f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=F(z)解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和F(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号