共查询到16条相似文献,搜索用时 140 毫秒
1.
本文将格林-关系从普通半群推广到(n,m)-半群上,从而定义了宽广(n,m)-半群、拟恰当宽广(n,m)-半群和恰当宽广(n,m)-半群,并讨论它们的基本性质。 相似文献
2.
本文将格林ρ关系从普通半群推广到(n,m)-半群上,从而定义了左同余、拟强ρ-宽广(n,m)-半群和强ρ-宽广(n,m)-半群.并讨论它们的基本性质. 相似文献
3.
给出了正则(n,m)-半群,逆(n,m)-半群,纯正(n,m)-半群的定义,并讨论了其基本性质,建立了(n,n-1)-半群上的Green定理,分别给出了(n,n-1)-半群是逆(n,n-1)-半群,纯正(n,n-1)-半群的充分必要条件. 相似文献
4.
引入序Γ-半群的(m,n)理想的概念,给出序Γ-半群的(m,n)理想生成的表示,利用(m,n)理想给出(m,n)单序Γ-半群和(m,n)正则序Γ-半群的刻画. 相似文献
5.
关于半群上格林关系的一个来龙去脉的综述 总被引:2,自引:1,他引:1
尽管“半群代数系统”的研究始于上世纪初,但是直到1951年,一套格林关系的建立才使得半群(特别是正则半群)的代数理论研究取得了长足的发展。 这充分展示了格林关系在正则半群研究上的有效性。近40年来,为了从正则半群出发扩大半群的研究领域,一系列广义格林关系被建立。鉴于此, 本文将对格林关系的一个来龙和一种类型的推广脉络作一系统综述。这一综述着重于中国人的工作,当然也涉及海外的某些工作。 相似文献
6.
将格林* *关系从普通半群推广到(n,m)-半群上,从而定义了左同余、右同余、拟强wrpp(n,m)-半群、强wrpp(n,m)-半群,并讨论它们的基础性质. 相似文献
7.
引入序■-半群的(m,n)拟理想、m-左理想、n-右理想的概念,给出它们的生成的表示;证明了序■-半群上任何(m,n)拟理想可以分解为一个m-左理想和一个n-右理想的交,且任何一个极小的(m,n)拟理想可以分解为一个极小m-左理想和一个极小n-右理想的交;给出了(m,n)拟单偏序■-半群的刻画和偏序■-半群拟理想、左理想和右理想的刻画. 相似文献
8.
龚志伟 《延安大学学报(自然科学版)》2012,31(4):4-6
利用n-表现维数引进了(m,n)-内射模,(m,n)-平坦模及右(m,n)-凝聚环的概念,并给出了右(m,n)-凝聚环的若干刻画。 相似文献
9.
曾月迪 《江南大学学报(自然科学版)》2014,13(5):611-615
文中引入强左(m,n)-凝聚环R(如果左R-模Rm的每个n-生成子模是(m,n)-表现),证明了在强(m,n)-凝聚环上,(P(m,n),I(m,n))和(F(m,n),C(m,n))是遗传余挠理论;每个左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模是(m,n)-投射当且仅当每个(m,n)-内射左R-模存在有唯一映射性质的P(m,n)-覆盖。 相似文献
10.
设m,n是两个任意取定的正整数, 通过引入(m,n) 遗传环的概念, 利用函子的正合性方法, 给出(m,n) 投射模和(m,n) 遗传环的一些等价刻画. 相似文献
11.
作为(m,n)-内射左R-模的推广,引入了Gorenstein(m,n)-内射左R-模的概念。在强左(m,n)-凝聚环上研究了这类模的一些性质;在强左(m,n)-凝聚环上利用Gorenstein(m,n)-内射左R-模给出了左(m,n)-内射环的一些等价刻画。 相似文献
12.
13.
设m,n是两个任意取定的正整数, R是环. 通过引入(m,n)-纯遗传环的概念, 利用同调方法给出(m,n)-纯遗传环的一些等价刻画. 相似文献
14.
对于两个正整数m和n,一个右R模M称为(m,n)内射模,如果从n个生成元的R^m模的子模到M的每个R同态映射都可以延拓为从R^m到M的同态映射,刻画了交换环上(m,n)内射模的性质。 相似文献
15.
设m和n是任意固定的非零整数,且(m+n)(m-n)≠0,M是一个因子von Neumann代数,δ是M上的一个映射(没有可加性或连续性假设).用矩阵分块方法证明了:若对任意的A,B∈M,有mδ(AB)+nδ(BA)=mδ(A)B+mAδ(B)+nδ(B)A+nBδ(A),则δ是一个可加导子. 相似文献
16.
通过构造(m,n)-树的(m,n)-图,给出了判断(m,n)-树的几个充分必要条件,从而进一步揭示了(m,n)-树的结构特征。 相似文献