共查询到20条相似文献,搜索用时 46 毫秒
1.
模糊关联规则是通过给定最小支持率和最小信任度来得到很多关联规则的,这些规则之间大部分是显而易见或不相关,为有效得到用户关注的模糊关联规则,引用了兴趣度了的概念。本文主要针对目前兴趣模糊关联规则挖掘现状进行分析研究。 相似文献
2.
周翠红 《中国新技术新产品精选》2009,(23):43-44
传统的基于支持度-置信度框架的关联规则挖掘方法可能会产生大量不相关的、甚至是误导的关联规则,同时也不能区分正负关联规则。本文提出了一种评价关联规则的可量化标准,进一步提出一种能同时挖掘正负关联规则的框架,实验证明该方法是有效的。 相似文献
3.
给出了一个基于约束的关联规则挖掘算法,首先依赖加权支持度产生频繁项目集,然后利用兴趣度产生关联规则,并对过滤掉的频繁项目集进一步分析发现包含负项集的关联规则。 相似文献
4.
董辉 《吉首大学学报(自然科学版)》2012,33(3):41-46
研究关联规则数据挖掘,讨论兴趣度的概念,设计基于此概念的算法.以高职成绩数据库为处理对象,分析课程间的关联规则,并以兴趣度为约束条件,剔除具有欺骗性的无效关联,挖掘一些合理可靠的课程间有趣的关联规则,从而为高职课程设置和教学大纲的修订提供参考,同时也验证了算法的有效性. 相似文献
5.
通过对Apriori算法进行的分析与研究,发现其在实用中存在两个主要问题:生成的关联规则具有相当大的冗余性;有可能挖掘出一条支持度和置信度均很高,但却是无趣的、甚至是虚假的关联规则,且不能产生带有否定项的规则.鉴于此,给出了关联规则的两个性质和引入兴趣度的第三个度量--相关支持度;利用两个性质消除了一定的冗余,同时利用相关支持度使挖掘出的规则更符合用户的需求,设计了挖掘出有效关联规则算法,在算法中利用导出的性质提高算法效率,较好地解决了上述问题. 相似文献
6.
李佐军 《西昌学院学报(自然科学版)》2019,33(2):103-105
高校信息化的选课系统积累了大量闲置的选课数据,如何把这些闲置数据利用起来为高校服务成了教学管理人员需要解决的问题。为了解决闲置选课数据的问题,对关联规则兴趣度挖掘在选课中的应用开展了分析讨论。使用Visual FoxPro语言编写了选课数据分析软件,并对选课数据进行挖掘分析,找出不同专业类型的学生对不同类型课程的偏好,为教师指导学生选课具有重要意义。 相似文献
7.
在对分布式关联规则挖掘的三种主要算法:CD算法、DD算法及FD算法的原理及实现步骤进行详细的阐述的基础之上,得出其各自的优缺点,并指出FD算法在网络通信效率和算法灵活性方面更具有优越性。 相似文献
8.
基于关系代数的关联规则挖掘算法 总被引:3,自引:0,他引:3
目的提出基于关系代数理论的关联规则挖掘算法。方法利用数据预处理方法,剔除无关属性、获得相应的目标特征子集。结果基于目标特征子集,利用关系矩阵及相关运算给出了搜索大项集的基于关系代数理论的优化的关联规则挖掘算法,该算法只需扫描数据库一次。结论克服了经典的Apriori算法需要多次扫描数据库的缺点,同时算法具有良好的并行性和可伸缩性。 相似文献
9.
10.
提出一种基于AprTidRec算法的分布武关联规则挖掘算法,并通过实验验证了算法运行的有效性。给出基于局部一全局通信模式的分布式关联规则挖掘方案,并在此方案基础之上进行了系统实现。 相似文献
11.
12.
为了解决利用RFCM算法划分数量型属性,并通过组合语言值进行语言关联规则挖掘中出现的规则数量太多,以及难于获得用户真正关注的规则等问题,提出了一种改进的语言值关联规则挖掘算法。通过最大隶属原则将记录在数量型属性上的取值转换为语言值,然后转换成布尔型属性关联规则挖掘问题。同时,给出一个能够度量语言值关联则简洁性和新奇性关注程度(兴趣度)的计算函数,用于减少选取关注语言值关联规则的工作量。采用本文提出的方法对一组实例数据进行实验,得到了关注程度较高的语言值关联规则。所采用的方法能适用于含有大量数量型属性的数据库,并能有效地获取用户关注的规则。 相似文献
13.
关联规则挖掘中的关联推理 总被引:1,自引:0,他引:1
在大型数据库项目之间发现关联规则是一个重要的数据挖掘问题,而挖掘出的关联规则数常常是巨大的.现基于覆盖运算,讨论已知关联规则可导出其它关联规则,并指出存在能覆盖全部关联规则的最小规则集. 相似文献
14.
数据 中有许多数据是处于不断变化中的,对于这些数据,人们希望能对其未来的取值作出预测,预测的结果并不需要知道这些数据的具体取值,而只需得出一个变化范围,提出发现此类变化中关联规则的2种算法。 相似文献
15.
关联规则算法是数据挖掘中的核心技术,本文给出了数据库中挖掘关系规则的一种新算法,该算法通过二次扫描,第一次将可能出现的频繁项目集加入到ISC中,第二次扫描采用逐步求精算法将频繁项目集加到项目集中,减少了数据库的扫描次数. 相似文献
16.
关联规则算法是数据挖掘中的核心技术 ,本文给出了数据库中挖掘关系规则的一种新算法 ,该算法通过二次扫描 ,第一次将可能出现的频繁项目集加入到ISC中 ,第二次扫描采用逐步求精算法将频繁项目集加到项目集中 ,减少了数据库的扫描次数 相似文献
17.
对数据挖掘关联分析的剪裁 总被引:1,自引:0,他引:1
利用属性间的相互关系对关联分析进行剪裁,针对关联分析会得到过多的属性间关系这一问题,分析了影响关联分析结果的诸多因素,提出了对包容关系,递推关系以及互递关系的剪裁算法,经实例运算表明,新算法能有效地剪裁关联分析所得到的结果关系集合,在此基础上,对几种关系剪裁算法进行了比较和讨论,并提出了一些改进设想。 相似文献
18.
19.
在不完全数据库中挖掘关联规则是一个重要的数据挖掘问题,其关联规则的支持度和置信度不可能精确计算,但可以估计.基于关联规则支持度和置信度的估计,讨论了不完全数据库中关联规则的挖掘问题. 相似文献
20.
多维多层关联规则有效挖掘的新算法 总被引:7,自引:3,他引:4
提出根据信息熵划分属性值区间或集合、自动生成与人机交互相结合确定层次结构的方法,将多维多层多数据类型问题转化为受约束的一维单层布尔型问题。在此基础上,对直接生成频繁模式的FPT-Gen算法进行了扩展,实现了有效挖掘多维多层关联规则的新算法MDML-FPT-Gen,其效率与可伸缩性均优于经典方法。 相似文献