首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为在Pyrex玻璃基片上湿法腐蚀出易于金属化(如电镀等)的深凹坑(或凹槽),选用HF:HNO3:H2O为腐蚀液,分别以Cr/Au(30nm/300nm,溅射)加光刻胶(15μm)和Cr/Pt(30nm/300nm,溅射)加光刻胶(15μm)作为掩膜进行腐蚀实验。实验发现在Cr/Pt/光刻胶掩膜下,Pyrex玻璃的腐蚀凹坑横向钻蚀小(钻深比1.34:1),侧壁倾斜光滑,并在凹坑(深约28μm)内成功地电镀了焊盘。该实验结果对要求高深宽比沟槽的微流体器件的制造也有一定参考意义。  相似文献   

2.
采用热蒸发在载玻片和SiO_2衬底上沉积约5. 12 nm的Cu薄膜,再用退火炉分别进行100、200、300、400和500℃等5个温度退火,得到不同温度下的纳米Cu薄膜.用原子力显微镜和紫外-可见分光光度计研究不同退火温度对纳米Cu薄膜表面形貌、粒子分布和光学性质的影响.实验结果表明:当纳米Cu薄膜在载玻片上生长Cu颗粒阵列时,需要将退火温度控制在200℃左右;若使纳米Cu薄膜在SiO_2薄膜表面也能生长Cu颗粒阵列,退火温度比没有沉积SiO_2薄膜的衬底高100℃,此时纳米Cu颗粒对应方均根粗糙度为7. 20 nm、峰高(Skewness)为1. 75,以及偏态(Kurtosis)为5. 67,仅透射率略低9%.这样的Cu颗粒阵列更利于做超结构薄膜与完美吸收的顶层纳米金属颗粒.当退火温度为500℃时,载玻片上生长Cu薄膜的透射率出现一个相对稳定的波段,该工艺条件制备出来的纳米Cu薄膜,可以用来制作一些微型芯片,而SiO_2薄膜表面生长使纳米Cu薄膜对应方均根粗糙度为6. 25 nm、峰高为0. 57,以及偏态为2. 66.这样的Cu颗粒阵列不仅能够做大频率光电波吸收,还可以用作全固态电池中电解质上层的导电层.  相似文献   

3.
不同电解液中钛合金电解等离子体抛光的对比分析   总被引:1,自引:0,他引:1  
利用粗糙度仪、激光发射率测试仪、光学及电子显微镜等设备,对不同电解液体系中得到的钛合金试样表面的粗糙度及形貌进行了分析.结果表明:配方4电解液体系中得到的试样表面最为平整、镜面效果最好;配方1、2、3处理得到的膜层表面粗糙度也有较大的改善.  相似文献   

4.
铁基金属玻璃涂层在无铅钎料中的耐腐蚀性及机理   总被引:1,自引:0,他引:1  
选用Fe基非晶合金粉末(含有Cr、Mo、Ni、P、B、Si),采用等离子喷涂方法在Q235基体上制备了金属玻璃涂层.在自行设计的腐蚀实验装置中将Q235钢、1Cr18Ni9Ti不锈钢和覆有Fe基金属玻璃涂层的Q235钢浸入450,℃的高温液态无铅钎料Sn-3.5,Ag-0.5,Cu中进行腐蚀,利用扫描电子显微镜微观分析了腐蚀后的微观形貌及腐蚀产物.研究结果表明:相同实验条件下,Q235钢和1Cr18Ni9Ti不锈钢表面均腐蚀严重,断面微观组织分为钎料层、腐蚀层和基体层.其中Q235钢的腐蚀剧烈,腐蚀层成分为FeSn2;1Cr18Ni9Ti不锈钢腐蚀较严重,腐蚀层成分为(Fe,Cr)Sn2.Q235基体表面的Fe基金属玻璃涂层腐蚀前后断面微观形貌变化不大,没有出现明显的腐蚀分层,表现出了非常好的耐高温无铅钎料腐蚀的能力.  相似文献   

5.
为揭示抛光过程中SiO_2磨粒与蓝宝石的摩擦化学反应机理,结合摩擦化学理论和纳米压痕试验方法,采用有限元法模拟纳米压头压入与卸载后蓝宝石表面的应力分布情况.数值模拟结果表明:当SiO_2磨粒与蓝宝石的接触应力为5~15GPa时,发生固相反应所需活化能约为14.46kJ/mol,反应速率常数约为0.07~0.23μm/min;在摩擦化学反应过程中,SiO_2磨粒与蓝宝石的接触半径为15~21nm,其变形量为6.88~10.22nm.低载荷纳米压痕试验结果表明:忽略压头与SiO_2磨粒的硬度、几何形状等影响因素,单颗SiO_2磨粒上的作用力小于0.7 mN,其微观表面粗糙度R_t=38.19nm及R_a=3.62nm.  相似文献   

6.
以聚合物模板法合成了粒径介于200~2 000 nm之间的SiO_2空心微球(h-SiO_2),并将h-SiO_2加入到丙烯酸树脂中形成复合薄膜,分别测试了空心微球及复合薄膜的紫外-可见-近红外区内的光学性能.以TEM、SEM、紫外-可见-近红外光谱仪等仪器对空心微球的结构、形貌及光学性能进行了表征,详细讨论了h-SiO_2的粒径,表面粗糙度对光学性能的影响.应用FDTD(时域有限差分法)方法对光束在通过空心微球后的电场强度进行模拟计算,得到与实验数据吻合的模拟结果.研究表明,直径为900 nm、加入占单体3.9%的MTC时所得到的h-SiO_2光反射能力最强,对近红外和可见光的反射率达到85%以上,紫外光反射率也高于80%,并且加入此h-SiO_2的丙烯酸树脂复合膜遮盖力也较好,可见光区光透过率低于10%.  相似文献   

7.
具有Fano谐振的表面等离子体纳米结构因其独特的光学特性及应用潜力,受到了广泛的关注和研究.品质因子(Q值)是谐振模式电磁存储能力的一个重要评价指标,本文从定义出发得到了Q值的时域拟合公式,并结合时域有限差分方法对典型金属纳米结构以及Fano谐振各特征模式的Q值展开研究;此外,还使用了较为简单方便的频域半高宽公式对上述结构进行了Q值计算.通过对比两种方法得到的结果,我们发现尽管频域半高宽公式能够适用于简单的金属纳米结构谐振模式Q值计算,但是在处理Fano谐振的Q值时将会带来较大的误差,有些情况下甚至极大地偏离实际值导致计算结果失去意义.,而本文中采用的时域拟合Q值公式从谐振模式的本质出发,不受结构响应谱线型的影响,适用于各种情况下对谐振模式Q值的准确计算.  相似文献   

8.
通过等离子体氧化、热氧化、电化学氧化在碳化硅基材上获得软质氧化层,利用软磨粒抛光实现氧化物的快速去除,有利于提高材料去除效率、提升加工表面质量。研究发现,通过等离子体氧化辅助抛光,表面粗糙度RMS和Ra分别达到0.626nm和0.480nm;通过热氧化辅助抛光,表面粗糙度RMS和Ra分别达到0.920nm和0.726nm;在电化学氧化中,基于Deal-Grove模型计算得到的氧化速度为5.3nm/s,电化学氧化辅助抛光后的表面粗糙度RMS和Ra分别是4.428nm和3.453nm。氧化辅助抛光有助于烧结碳化硅加工工艺水平的提升,促进碳化硅零件在光学、陶瓷等领域的应用。  相似文献   

9.
采用热丝化学气相沉积(HFCVD)方法,在反应气压、衬底温度一定的情况下,通过改变碳源浓度以制备低粗糙度金刚石薄膜.扫描电镜(SEM)和原子力显微镜(AFM)测试结果表明,随着碳源浓度适当增加(从2%增加到3%),金刚石薄膜表面晶粒尺寸减小到纳米量级,平均粗糙度从45 nm降低到21 nm,同时光学透过率下降.椭圆偏振光谱拟合结果显示,随着碳源浓度的增加,薄膜折射率n稍有偏离理想值.拉曼散射光谱显示随着碳源浓度的增加,薄膜中非金刚石相含量增加,一定程度上影响了薄膜的光学质量.结果表明,在表面粗糙度相差不大的情况下,薄膜的质量决定了其光学性质.  相似文献   

10.
作为一种经典光学结构,光学谐振腔在光通信、光传感等领域得到了广泛的应用,一直是光电子学研究的热点。共振光隧穿谐振腔,源自受抑全内反射,是一种新型的光学微腔。依据Gansch公式,拟通过两种方式降低腔体的吸收(提高Q_(abs))和改变结构参数(提高Q_(str)),提高谐振腔Q值。因此,建立了共振光隧穿效应(ROTE)结构的谐振腔模型;利用传输矩阵法,仿真计算了谐振腔的反射谱谱线,并分析了其Q值变化规律。仿真结果显示:通过降低腔体吸收和调节系统参数(隧穿层厚度、入射角等),ROTE结构的谐振腔Q值总计提升了约10~5倍,可期望Q值达到10~8.相比传统的FP腔结构(Q值在10~3~10~4数量级)和当前主流的回音壁模式结构(Q值在10~7~10~8数量级),ROTE结构谐振腔的理论Q值可达到国际一流水平,同时还具有易于集成、工艺简单、稳定性高、成本低廉的优点。为高Q值ROTE结构的制备及进一步应用奠定了理论基础。  相似文献   

11.
采用热蒸发方法在玻璃基片上沉积100 nm以内不同厚度的铜薄膜.利用X射线衍射仪、原子力显微镜和分光光度计分别检测薄膜的结构、表面形貌和光学性质,用Van der Pauw方法测量薄膜的电学性质.结果表明,可以将薄膜按厚度划分为区(0~11.5 nm)的岛状膜、区(11.5~32 nm)的网状膜和区(32.0 nm)的连续膜.薄膜的表面粗糙度随膜厚的增加,在、区时增加,区时减小.薄膜电阻在区时无法测量,在区随膜厚的增加急剧下降,而在区时随膜厚增加缓慢减小.薄膜的光学吸收与其表面粗糙度密切相关,其变化规律与表面粗糙度的变化相一致.  相似文献   

12.
为弄清Mo和Ni元素在低Cr钢耐蚀方面所起的作用,炼制了新型2Cr1Mo2Ni钢,研究其在模拟油田采出液中的腐蚀行为,实验条件为80℃,0.8MPa CO2分压.利用扫描电镜和能谱分析研究了2Cr1Mo2Ni钢和3Cr钢的腐蚀产物膜微观形貌和成分,测试了高温高压极化曲线和电化学阻抗谱,分析了腐蚀产物膜的生长过程.实验结果表明,Mo和Ni元素在提高抗CO2腐蚀性能方面的作用不及Cr元素.2Cr1Mo2Ni钢腐蚀164h后,中低频感抗弧消失,腐蚀产物膜开始完全覆盖基体表面;腐蚀240h后,生成的腐蚀产物膜具有较好的保护性.  相似文献   

13.
采用高能量纳秒级脉冲激光,对42CrMo合金钢表面进行激光冲击强化处理,测定42CrMo钢在激光冲击强化后的残余应力、硬度及粗糙度,并对试样进行高温腐蚀试验,利用扫描电子显微镜(SEM)观察试样表面的微观形貌,研究激光冲击强化处理对42CrMo钢耐高温腐蚀性能的影响.结果表明:激光冲击强化后试样表面腐蚀形貌明显比未进行激光冲击处理试样更好.激光冲击强化后42CrMo钢耐高温腐蚀性能得到提升,主要是由于材料表面残余压应力层能够抑制材料表面氧化膜的脱落,提高其耐高温腐蚀性能.与小能量激光冲击相比,大能量冲击可以大幅度提高试样表层的残余压应力值,并提高残余压应力的影响深度.  相似文献   

14.
利用光纤锥耦合的方法来激发光纤微柱腔中的光学回音壁模式,从而获得光纤微柱腔的传输谱线.主要研究了光纤锥的耦合位置以及输入激光的偏振态对光纤微柱腔传输谱线的影响.实验结果表明:当光纤锥垂直放置在距离光纤微柱腔切平端较远处时可以得到较高的品质因子,但耦合位置的改变对被有效激发的模式的共振波长基本没有影响;当改变输入激光的偏振态时,被激发的回音壁模式的共振波长会有些不同,但其Q值基本不变.  相似文献   

15.
通过腐蚀失重计算、扫描电镜、X射线衍射方法、极化曲线分析等手段,研究了pH值对Q235钢在模拟酸性土壤中腐蚀行为的影响.在模拟酸性土壤环境中,Q235钢的腐蚀速率随土壤pH值升高而降低,经360 h腐蚀后,在pH值为4.0、4.5和5.1的土壤中试样的腐蚀速率分别为0.68、0.48和0.42 mm·a-1.随土壤pH值升高,Q235钢锈层更为致密,其表面蚀坑由窄深型发展变为宽浅型发展.腐蚀产物均为SiO2、α-FeOOH、γ-FeOOH、Fe2 O3及 Fe3 O4,随土壤 pH值升高,腐蚀产物中α-FeOOH/γ-FeOOH质量比升高.极化曲线分析表明,随土壤pH值升高,Q235钢腐蚀电位升高,自腐蚀电流密度降低,试样腐蚀速率减小.  相似文献   

16.
为了弄清O2和N2的流量变化和基体负偏压对涂层微观结构的影响,利用电弧离子镀技术制备了Cr-O-N涂层,对涂层样品进行了X射线衍射分析,扫描电镜和原子力显微镜观察,电子探针成分分析,结果表明Cr-O-N涂层含CrN和Cr2O3相,衍射峰的择优取向、涂层的表面粗糙度、相含量和化学成分与制备过程中的气体流量、基体负偏压等因素密切相关:随着氧流量的增加,涂层的表面粗糙度上升,涂层中氧元素含量和Cr2O3相含量增多;基体负偏压的升高有利于涂层沿CrN(220),Cr2O3(300)面择优生长和涂层的致密性提高.  相似文献   

17.
研究了金刚石薄膜的厚度、表面粗糙度及其成分对金刚石薄膜光学透过率的影响,采用AFM观察金刚石膜的表面形貌并测试其表面粗糙度Ra值;用XPS仪测试了金刚石膜成分;用UV-365分光光度仪测试了光学透过率.结果表明:表面粗糙度是影响金刚石薄膜光学透过率的重要因素,其降低一倍,光学透过率增加两倍多.要提高金刚石薄膜的光学透过率,应大力降低表面粗糙度.  相似文献   

18.
40Cr超高速磨削工艺实验研究   总被引:1,自引:0,他引:1  
采用CBN砂轮,在砂轮线速度为90~210 m/s的磨削条件下,对40Cr进行了超高速磨削工艺实验.分析了在超高速磨削过程中砂轮周围气障对磨削过程的影响,讨论了砂轮线速度、切削深度、工件速度等工艺参数对磨削力、工件表面粗糙度、比磨削能的影响.实验表明,在高速超高速磨削过程中,砂轮速度提高使得磨削力大大减小,工件表面粗糙度值下降,工件表面质量得到提高;加大切削深度而工件表面粗糙度值增加不大,大大提高了磨削效率,同时也保证了工件表面质量.  相似文献   

19.
对铜箔进行化学处理,考察阴极钛辊表面粗糙度及阴极钛辊的腐蚀对铜箔的性能及表面图像影响.研究结果表明:增加处理液中Cu2+浓度及提高电流密度,有利于表面粗糙度增加,抗剥离强度增大,蚀刻因子Ef降低.若同时降低浸泡复合液中Cu2+和Zn2+浓度,增加Sb2+浓度,则表面粗糙度及抗剥离强度降低,蚀刻因子增加;复合液中Sb2+浓度增加也能使表面粗糙度增加,蚀刻因子增加,但是,抗剥离强度基本没有变化.添加CuSO4后,阴极钛辊腐蚀速度下降,当CuSO4质量浓度达到20 g/L后,钛的耐腐蚀速度在0.050 mm/a以下;当钛辊表面粗糙度Rz降低时,电解铜箔表面相对平整,晶粒大小较均匀,排列较规则.  相似文献   

20.
为了探究沉积气压对ZrO2薄膜光学特性的影响规律,以玻璃和硅片为基底,利用射频磁控溅射的方法在不同沉积气压下制备ZrO2薄膜样品.通过分光光度计测定薄膜在可见光波段的透射光谱,利用椭圆偏振谱仪表征薄膜的折射率、消光系数、厚度等光学参量,利用原子力显微镜观测薄膜表面的微观结构等.结果表明:(1)薄膜的沉积速率随沉积气压的增大而减小,沉积气压为0.4 Pa时沉积速率最大,为0.033 nm/s,沉积气压为1.0 Pa时沉积速率最小,为0.011 nm/s;(2)当沉积气压为1.0 Pa时,200~1 000 nm波段薄膜的平均透射率和折射率均最高,分别为82.71%和2.35,表现出良好的透光性;(3)沉积气压对薄膜消光系数的影响较小;(4)不同沉积气压下制备薄膜的表面粗糙度也不同,沉积气压为1.0 Pa时薄膜的粗糙度最低,为5.5 nm,沉积气压为0.6 Pa时薄膜的粗糙度最高,为25.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号