首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
轮扣式钢管脚手架搭设速度快,连接节点构造简单,易用性强,常用于满堂脚手架。首先依据规范要求,对三步三跨的轮扣式脚手架架体进行足尺试验研究,得到架体的破坏模式和极限承载力。采用有限元软件SAP2000进行分析,节点刚度取35(kN·m)/rad,节点为半刚性连接,并对有限元模型施加初始缺陷荷载,等效水平荷载取理想状态下屈曲极限的1.2%,此时有限元分析结果与试验结果最为贴近。常由于地基承载力不足等原因造成底层脚手架局部塌陷,从而可能引起架体结构连续倒塌,造成巨大的人员财产损失。通过释放支座节点模拟地基局部塌陷,分析架体结构的受力变化,并通过在不同位置设置水平杆,分析其对提高结构抗连续倒塌能力的影响。  相似文献   

2.
目的研究风荷载作用下当连墙件数量一定时,连墙件的最佳布置方式,为超高层建筑施工脚手架连墙件合理设计提供依据.方法依据风荷载作用计算公式,利用大型通用有限元分析软件ANSYS对整个架体进行受力分析,对杆件与杆件连接的扣件节点采用半刚性连接的分析方法,对比分析连墙件矩形和菱形两种布置方式对架体系统杆件的受力和节点变形影响.结果从有限元的分析中得出相应不同连墙件布置方案情况下的架体杆件的内力分布以及节点位移云图,并对比分析得出矩形布置的大横杆内力最大相差到2371N,明显大于菱形布置,节点位移也同样分布比矩形布置更零散.结论风荷载作用下,连墙件的菱形布置比矩形布置的架体各杆件受力和变形更加均匀合理,在脚手架的设计中应该优先考虑.  相似文献   

3.
针对传统承插型盘扣式钢管支架在实际应用中存在的问题,优化设计了一种新型全工况适应型盘扣式钢管支架体系。为检验新型体系的安全稳定性,对螺丝盘节点受力性能进行了基本单元体试验研究和节点半刚性有限元分析,然后对该基本单元体进行SAP2000建模分析,通过对比分析试验值和理论值,验证有限元分析及试验结果的合理性,确定节点刚度值的取值范围。研究结果表明:螺丝盘与丝杆连接可靠,节点不会先于构件发生破坏;节点刚度值是影响结构稳定承载力的重要因素,建议在工程应用中,半刚性节点的刚度值取70 kN·m/rad。  相似文献   

4.
目的研究现浇混凝土模板体系中可调支托伸出长度对架体侧移、承载力及稳定性的影响,提出可调支托伸出长度构造要求,为现行规范修订与施工方案制定提供依据.方法结合单根立杆加载可调支托试验,应用有限元软件模拟架体受力性能.分别针对单根立杆加载模型和拓展模型进行有限元模拟.结果随着可调支托伸出长度增加,模板支架破坏荷载显著下降,架体最大侧移量显著增加.可调支托至顶层水平杆轴线的长度不应超过0.4 m,其中可调支托伸出立杆顶部长度不宜大于0.2 m.结论随着可调支托伸出长度的增加,模板支架体系极限承载力下降,架体顶端侧移增加,若可调支托至顶层水平杆轴线的长度值相同且可调支托伸出长度大于立杆伸出长度,则可调支托顶端侧移量将大大增加,模板支架的整体稳定性将明显降低.  相似文献   

5.
承插型盘扣式钢管支架盘扣节点属于半刚性连接,其抗扭刚度是架体结构稳定承载力的重要影响因素。为保证承插型盘扣式钢管支架设计安全可靠和经济合理,对架体盘扣节点抗扭刚度影响因素进行研究,揭示各影响因素对盘扣节点抗扭刚度的作用机理,提出合理的抗扭刚度值。在盘扣节点抗扭试验的基础上,分析得盘扣节点扭矩-转角关系曲线和抗扭刚度影响因素,建立盘扣节点实体有限元模型对影响因素进行数值分析,提出合理的盘扣节点抗扭刚度建议值,并通过架体压载试验和有限元数值分析的结果对比,验证节点抗扭刚度建议值的合理性。研究结果表明:插销与连接盘的接触面积和材料应变硬化模量对盘扣节点抗扭刚度影响较大;盘扣节点扭矩与转角关系曲线非线性特性明显,抗扭刚度分3个阶段进行选取较为合理,各阶段盘扣节点抗扭刚度值宜取50~60、20~25、0~5 kN·m/rad。  相似文献   

6.
目的研究混凝土浇筑顺序对高大模板支撑体系稳定性影响,为《建筑施工模板安全技术规范》JGJ162-2008修订提供依据,为施工方案设计提供参考.方法笔者结合高大模板试验,利用ABAQUS有限元分析软件模拟其受力性能.探讨模板体系在施工过程中,混凝土浇筑顺序对架体整体稳定性的影响.结果数值模拟与试验结果吻合良好,验证了该计算模型的正确性.分析得到在非对称浇筑混凝土过程中,立杆内力发生突变,架体水平侧移达到14.647 mm,而在对称浇筑混凝土过程中,架体水平侧移只有0.992 mm.结论建立的有限元模型可以较好地模拟高大模板支撑体系受力性能.采用非对称方式浇筑混凝土将会使高支模架体产生较大侧移,立杆受力不均,不利于架体整体稳定性.混凝土浇筑顺序在高支模体系中不可忽略.建议采用对称方式浇筑混凝土,提高架体整体稳定性.  相似文献   

7.
相比传统脚手架,新型套扣式钢管脚手架在安全、经济和便利上具有优势,但因相关理论研究尚不完备,从而影响了其进一步推广使用.文中以该新型套扣式钢管脚手架节点为对象,进行了3种不同工况下的水平受压承载力试验研究和有限元分析.结果表明:试验数据与有限元模拟值基本一致,3种工况下随着水平受压荷载的增大,套扣节点的变形均线性增加,随后节点受压屈服,表现出明显的非线性特征;其中节点在单向受压和双向非对称受压下破坏形式表现为立杆弯曲破坏和钢管截面压瘪,而双向对称受压下为节点处立杆钢管压瘪,水平杆端接头与十字套扣连接松动;表明节点的抗压刚度和受压承载能力与其受荷方式直接相关.在此基础上,对节点的抗压参数进行了系统分析,得出立杆长度对节点受压承载力影响最大,而十字套扣、水平杆端接头厚度的影响很小.由此,提出了基于立杆长度的节点水平向抗压刚度模型.  相似文献   

8.
文章根据碗扣式满堂支架的受力性能确定了计算单元,提出了基于水平杆不连续性的简化模型,即有多个弹簧支座的多节间连续压杆模型,考虑了剪刀撑、扫地杆高度和顶托高度、架体高度及杆件的初始缺陷等因素对稳定承载力的影响,并对理论临界荷载做了合理修正;从结构和材料特性2个方面推导了压杆的弹簧刚度计算公式,偏于安全取两者的较小值;借助支架承载力试验值与该模型计算结果对比来证明此简化模型的正确性,并根据修正公式快速地计算支架的稳定荷载,为碗扣式满堂支架的整体稳定性分析提供了一种方法。  相似文献   

9.
目的以南京市牛首山佛顶宫铝合金穹顶工程为背景,取其典型节点研究分析,考察铝合金盘式节点的受力性能、破坏模式、极限承载力.方法通过对铝合金盘式节点足尺模型进行静力加载试验,分析了盘式节点整体刚度与变形的性能;采用ABAQUS有限元软件对盘式节点整体刚度与变形性能进行模拟,并与刚性节点性能进行对比.结果铝合金盘式节点试件PS1在节点盘中心承受集中力,当达到极限荷载破坏后,试验与有限元的破坏现象均表现为上节点盘与工型杆件3连接处的节点盘断裂;上节点盘的应力较大,出现明显的马鞍式变形.结论试件PS1的有限元与试验的荷载位移曲线有比较好的吻合;试件PS1的箱型杆件和工型杆件与刚性节点对应杆件相比具有较高的刚度.  相似文献   

10.
为考察焊钉集群布置对后结合超高性能混凝土(UHPC)组合桥面板受力性能的影响,进行常规均匀焊钉布置组合桥面板及群钉布置后结合组合桥面板试件的弯曲荷载试验和基于材料塑性损伤模型的有限元参数化分析。试验结果表明,群钉布置与均匀焊钉布置试件破坏模式特征均为UHPC板压溃、钢结构U肋底面屈服,二者弹性抗弯刚度分别为232kN·mm-1及213k N·mm-1,承载力分别为2 154 kN及2 049 kN。U肋屈服前,两试件的界面最大滑移值均小于0.2 mm。两试件应变分布及发展规律相似,截面应变分布均近似服从平截面假定。参数化分析结果表明,群钉孔纵向布置间距由600 mm增至1 200 mm,承载力及弹性刚度无明显变化。群钉孔尺寸相同时,孔间距对UHPC黏结界面结合状态无显著影响。间距600 mm相较1 200 mm布置可更好地保证焊钉受力安全性及截面组合效应。综合对比参数化模型抗弯性能,纵向间距600 mm结合群钉孔内2×3群钉布置对正弯矩作用下后结合钢-UHPC组合桥面板受力状态改善更为有利。  相似文献   

11.
为了研究具有杆间弹性支撑的端部固定压杆稳定性问题,首先简化工程模型为理论模型,求解两端固定压杆稳定承载力与杆间弹性支撑刚度的理论关系,并提出简化计算公式;其次根据理论模型,使用杆间弹簧支撑轴心压杆进行失稳试验,调整弹簧数量以改变弹性支撑刚度,进行5组不同弹性支撑刚度下的杆件稳定承载力试验,通过试验结果验证理论解的正确性;最后使用ABAQUS进行有限元分析,计算杆间不同弹性支撑刚度下压杆的稳定承载力,对理论解进行验证.通过试验以及有限元分析验证了理论解的正确性,为工程设计人员提供了简单可靠的计算公式.  相似文献   

12.
不规则布置梁节点的设计是钢结构设计中的难点.文中以不规则布置梁加强环式梁柱节点为研究对象,进行了该类型节点的足尺模型试验,了解节点的受力性能和破坏机理.基于试验结果,采用理想弹塑性应力-应变关系和Von Mises屈服准则,并考虑几何非线性的影响,建立了与试验模型对应的有限元分析模型.在此模型基础上,利用有限元程序进行了参数分析.综合试验、有限元分析结果,提出了不规则布置梁加强环式梁柱节点承载力和刚度的计算方法.  相似文献   

13.
建立合理的有限元模型,应用有限元法对腹杆与弦杆倾角不相等圆钢管搭接节点进行非线性计算,得出的承载力具有相当的准确度.与弦杆倾角较大腹杆作为搭接腹杆的节点极限承载力较高.由研究分析可知当贯通腹杆与弦杆夹角减小后,节点搭接率降低,但不论CW还是TW型搭接节点极限承载力均相对对称节点有所提高.由公式的计算结果与数据库中N型搭接节点试验结果进行比较可知计算公式可以准确的预测腹杆与弦杆倾角不相同搭接K型节点极限承载力.  相似文献   

14.
以平面K型圆钢管搭接节点的试验数据为基础,通过对试验桁架建立铰接、半铰接和刚接杆系有限元模型,计算受外荷载作用下试验桁架各杆件的轴力.有限元计算结果和试验数据对比分析可知,节点试件腹杆和弦杆轴力的试验平均值更接近半铰接模型的计算结果.进一步弹塑性分析表明,在一定的几何参数条件下,搭接节点腹杆轴力可以根据半铰接模型得到的腹杆内力比例和实际加载量确定.建议在后续的搭接节点试验中,可将非节点区域的腹杆壁厚加大,以便通过弹性方法直接反算杆件轴力.  相似文献   

15.
纤维模型在平面框架非线性静力分析中的应用   总被引:9,自引:0,他引:9  
为准确描述钢筋混凝土结构局部的受力情况,通常需要采用微观模型来进行非线性有限元分析.将梁柱单元建立在弹塑性纤维模型的基础上,直接从材料本构关系出发,对平面钢筋混凝土框架结构进行了金过程非线性静力分析.在框架结构与梁柱单元之间用刚度法,组装杆件刚度得到结构刚度;杆件与杆件内部积分点处的横截面之间采用柔度法,基于杆端力和截面力的平衡获得杆件刚度;每个横截面通过平截面假定协调纤维变形,同时考虑了几何非线性,由纤维的刚度得到截面刚度.为追踪非线性反应的软化段,求解时选取柱面弧长法.同时选取实例分别进行单向推覆和低周反复加载试验的程序模拟,得到了较好的效果,并提出进一步优化改进的建议.  相似文献   

16.
钢桁架通常按铰接体系计算,而实际结构中由于构造等原因,经常形成刚性或半刚性节点,杆件端部受到不同程度的约束而产生节点弯距.通过大尺寸的、大跨度带悬挑矩形钢管桁架的模型试验,着重分析了该桁架中的节点弯距.试验结果表明,节点弯距在本桁架中的影响不可忽略,在设计中应加以考虑.还进一步对该结构进行了两种节点构造形式的有限元分析,并通过和试验结果进行对比可知,腹杆和弦杆应分别采用相应的节点构造形式的分析结果进行设计.  相似文献   

17.
平面外失稳是平面钢管桁架受压主管在荷载作用下的主要破坏形式之一。在稳定验算过程中,如果不考虑相贯节点转动刚度的影响,对于受压主管无支撑的平面桁架将得到一个不精确的面外稳定承载力。为了评估节点转动刚度各分量的影响,对平面钢管桁架建立带连接单元的杆系非线性有限元分析模型,并对有限元模型的稳定承载力进行了节点刚度参数分析。分析结果表明,节点面外转动刚度对于面外稳定承载力影响显著,而节点面内转动刚度及扭转刚度影响很小,对平面钢管桁架进行稳定分析时,必须考虑节点面外转动刚度的影响,才能得到较为精确的分析结果。  相似文献   

18.
对空间X+双KK型圆钢管节点的静力性能进行了加载的试验研究。介绍了节点试验方案,考察了节点的破坏性状及其承载力,检验节点构造措施是否合理,验证了实际结构节点分析建立的有限元模型的适用性以及应力分布特点和计算结果的正确性。X+双KK试件在设计荷载作用下各腹杆及节点区工作性能良好,各杆件均处于弹性阶段。加载至设计荷载2.0倍时,节点区受拉腹杆处测点首先进入屈服,加载至3.15倍设计荷载时,控制腹杆全截面屈服,节点区弦杆测点应力水平较小。随后,其它腹杆也进入屈服,节点区进入塑性且变形发展到弹性变形3倍以上时仍未发生断裂。指出在实际结构中,为得到与试验节点相似的承载力水平,焊接节点的腹杆与弦杆的相贯焊缝质量应加强监控。节点的有限元分析结果与实测结果最大误差为16.5%。  相似文献   

19.
【目的】研究角钢塔主斜材典型节点的受力特征。【方法】对角钢塔典型节点在有无辅材角钢及不同辅材角钢厚度、连接板厚度、螺栓间距等参数下的受力性能进行有限元分析,研究当紧固力矩为300 N·m时角钢塔节点在拉剪作用下的应力分布云图、极限承载力和破坏形态,并将典型工况的模拟结果与试验结果进行有效对比,验证有限元方法的有效性。【结果】有限元模拟结果与试验结果吻合良好,模拟得到的极限承载力和破坏形态与试验结果相近。【结论】增加连接板厚度可提高节点的极限承载力;增大辅材角钢厚度对提高节点承载力的作用不大,但有利于增强节点的初始刚度;螺栓间距对节点承载力有显著的影响,过小的螺栓间距易造成应力集中并降低极限承载力,建议最小螺栓间距应不小于3倍螺栓直径。  相似文献   

20.
目的研究风荷载作用下不同施工高度处脚手架立杆的最大弯矩值及其变化规律,为高层及超高层建筑施工脚手架的施工设计提供数据支持.方法依据风荷载作用计算公式,考虑超高层建筑施工脚手架的风振影响来计算风载标准值.对扣件节点采用半刚性连接的计算方法,利用有限元分析软件ANSYS对整个架体进行受力分析.结果随着脚手架所处高度的增加,立杆最大弯矩值变化曲线大致分三个阶段:直线上升段、曲线发展段、水平持续段.脚手架立杆最大弯矩出现在迎风面立杆的有连墙件节点处.结论按照现行规范中风载作用下立杆弯矩计算式得到的弯矩值明显小于模拟分析得到的弯矩值.当脚手架施工高度大于450 m时,建议按450 m高度时立杆最大弯矩取值,可简化计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号